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ABSTRACT

This final report describes progress over the period 1 July 1977
throi~ h 30 June 1978 on a five—year project aimed at the problem of
synthesizing so—called induct ive assertions to support the Flo~~—Hoare
method for proving correctness of computer programs.

During the first few years of the project, the emphasis was on more
or less direct approaches toward alleviating this problem. Initially,
we concentrated on building and using a mechanical solver for finite
difference equations to synthesize inductive assertions. This approach
had lim ited success. U-ifortunately, neither this approach nor the
allied approaches pursued simultaneously by Katz, Manna, ~~gbreit, and
German have proved to be adequate in any general sense. Therefore,
during the per iod 1975—77 we explored alternatives that gave promise of

at least alleviating the problem or of bypassing it entirely. These

alternatives encompassed the transformation of programs into primitive

recursive form prior to verification, the method of generator induction
for pr oof of properties of complex data structures, the use of a
hierarchical desig n methodology (HDM ) to structure programs so as to
minimize the need for loop-cutting assertions , and the methods allied to
subgoal induction and computational induction. The general tenor of
these alternative schemes is that to facilitate program verification

considerable care must be taken in properly structur ing both the
programs to be proved and their specifications. M ideal situation

~~u1d be one in which all the specifications are written in a fo rmal
lang uage that can be processed by a powerful theorem prover . For the
l3oyer-Moore theorem prover recursive function theory is such a language.

In the f i f th  ~~ar of our research , reported here , we concentrated
on using the Boyer—Moore system to prove several quite different kinds
of pr ograms. The f i rs t  set of programs ver i f ied here fo rm a system of
LISP functions implementing a verification condition generator (VCG) for
a simple block—structured language. The specificat ions for this \~ G are
given as star~Jard Ibare ax ioms and rules. The second set of programs

i i i
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are algorittn~s for achiev ing synchronization among several clocks . This
application arose in connect ion with the design of an operating system
for a faul t— tolerant av ionics computer (SIFT) with hardware and software
redundancy features.

A separate problem addressed during the f i f th  year is the
= application of directed graph theory to the design of an efficient

algorit~in for dec id ing inequalities for sets of integer var iables. This
work represents a fur ther  extension of a series of efficient decision
algorit~m~s for Presburger ariti-inetic ( under various restr ictions) . Most
of these algorithus have been implemented (in LISP) as part  of
experimental program verifiers built at SRI during the past few years.

iv

-.



PROJECT PERSONNEL

The following people constituted the project team for this effor t
at various times during the period 1 July 1977 thro~~h 30 June 1978:

I~ bert S. Boyer

Bernard Elspas

Milton W. Green

F~bert E. Shostak

Drs. Elspas and Shostak served as co—principal investigators.

The authors wish to acknowledge their considerable debt to Drs.

~~bert S. Boyer and J Strothe r Moore for many valuable discussions , in

particular for assistance in using their recursive function theorem
prover . c~ also wish to express our grat i tu3e for helpful d iscuss ions
on a var iety of subjects to the following ind ividuals: Woody Bled soe ,
John Guttag , Paul Gloess , Shmuel Kat z , Ralph London , and Ma rk Moriconi.

V

- ~~~~.



CONTENTS

ABSTRACT  ii i

PROJECT PERSONNEL v

INTRODUCTION AND SUMMA RY 1

A . I n t r o d u c t i o n  I

B . Re la t i on  to Other  Compute r  Science Labora to ry
Projects 3

C. Report Overview 5

II DECIDING LINEAR INEQUALITIES BY COMPUTING LOOP
RESIDUES 7

A . Introduction 7

B. Definitions 8

C. Procedure for Inequalities with Two Variables - . - - 10

D. Efficiency and Other Issues 12

E. Strict Inequalities 13

F. Extension to Arbitrary Sets of Inequalities 13

C. Proof of the Main Theorem 15

III CONSISTENCY PROOFS FOR A SIMPLE VERIFICATION
CONDITION GENERATOR 2 1

A . Introduction 21

B. Syntax for a Simple Lar1guage 23

C. Forma l Semantics for the Language SL 26

D. Specifications of a VCG for SL-Consistency
with the Axioms 33

E . Verification of the Imp lementation in Te rms
of the Specifications 40

F. Some Observations 46

IV INDUCTIVE PROOF OF SET PROPER TIES 49

REFERENCES 53

vii

PZ~ECED1NG FAJE F~LU~(~~oT F1A..i~.ij~



5

APPENDICES

A Machine Proofs of Consistency Between Algebraic
Specifications and a VCG Implementation A-i

B “Reaching A greement in the Presence of Faults ,”

by M. C. Pease , R. E. Shostak , and L. Lamport . . . B-I

C Machine Proofs of the Synchronization Algorithm .  C-i

D Project Activities D-l

viii 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I INTRODOCTION AND SUIMPIRY

A. Introduction.

This is a final report covering progress during the last year of a
five—year research effort on problems entailed in making the Floyd—Hoare

approach to program verification E l , 2 1* a practical techn ique . P1n

extensive summary of the work of the preceding four years appears in our
last interim report [3].

The Floyd—Hoare techn ique is a method for applying mathematical—

logical tools to prov ing “ correcthess” of computer programs. It is now
among the most promising approaches to the achievement of rel iable
computer programs-—currently a source of major concern to the Air Force.
The Floyd—Hoare technique has already had considerable impact on the
field s of language design [4,5], formal specification and desig n of
software [6]. Various aspects of the method are currently being
employed for the design and verification of specific properties of

developnental software systems [7,81, especially such properties as
security and fault tolerance, which are of critical importance in Air
Force systems. A number of developnental program verifiers (at various

stages of developnent) are in experimental use at such laboratory

environments as T~SC—ISI, Stanford University, University of ~~xas, and
System Develop’nent Corporation, as well as at SRI International.

Closely allied prototype systems using symbolic execut ion also exist at
IBM Watson Research Center [9 , 101 and General I~search Corporation [11].
(~ e of SRI’ s program verif iers  (supported by RAIX ) is scheduled for
completion in Movember 1980 as part  of an integrated envirorinen t for the
design , developuent , deb~igg ing , and verification of JOVIAL J73/I
programs.

However , the method of proof of correcthess has not yet come into
widespread use as an everyday techn ique for attaining confidence in the
correctness of software prod ucts. This is attr ibut able in p ar t  to the
usual time l apse between a laboratory demonstration of feasibility and
practical use . For formal program verification the transition has been

*Re ferences are listed following Section IV.
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hampered by several factors which are perhaps unique to this discipline .
First , the Floyd—Hoare method (indeed , any formal method for prov ing
correctness) demands unusual mathemat ical r igor , considerable skill in
fo rmal logic , and sophistication beyond the capabil ities of most
research programmers (let alone production programmers!).  Second , the
necessity for inventing inductive assertions has been found to be a
serious stumbling block to the pr actical appl ication of the Floyd—Hoare
method , even when mach ine aid s are provided. It has generally beer.

recognized that there is an education gap in the training of prog r ammers
which must be overcome if such formal devices are to be broirght into the
practical arena. Fortunately, most university Computer Science
depa r tments are now making loop (inductive) assertions an integral p art
of the teaching of iterative and recursive prog r amming .

The intr insic d i f f icu l ty  of writing adequa te induct ive assertions
was recognized as long ago as 1969 [12), and it was, of course, the

initial motivat ion for this project. Despite our best efforts , and
those of a number of other researchers [13,14 ,15] it cannot be said that

this problem has been “ solved ” in general . The results of our work , and
of the others just cited has made it possible to mechanize the invention
of inductive assertions in special cases and for special domains. Thus,

the d i f f e rence equation technique , especially when combin~J with the
“outside—in ” heuristics of Katz—Manna [131, usually provides adequate

inductive assertions for integer (and real number) pr ograms . A great
deal of insight has been gained from the alternativ e v iews of the
pr oblem pased by the subgoal induction method of Morris and Wegbreit

[161, and by the analysis of loop schemes due to Basu and M isra [15] .
In particular, many have noted that the invention of inductive

assertions is analogous to the “generalization step” often required in

carrying out inductive proofs. Our work on primit ive recursive
transformat ion [17] carried thi~ notion one step further. There al so

emerged from all of this work the underlying conclusion that an
important part of the problem of loop assertions really lies in the
basic difficulty of adequately specifying software. For this reason we

spent part of our effort in exploring the capabilities of two

2 
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specification methodologies——the method of algebraic specifications [18]
and methods of hierarchical specification of abstract modules. The
latter is best exemplified by the SRI Hierarchical Developuent
Methodology (H~ 1) (6] .  Both approaches serve to simplify the problems
posed by inductive assertions by (1) minimizing the need for loop-
cutting assertions , and (2) provid ing powerful assertion languages
(e.g., the SRI —H r~.1 language SPEX IAL) in which to write specifications.
In Pppendix A of our last interim report (3 ] we appl ied HCII methodolog y
to proving properties of a real program. Section III of the present
report prov ides a similar example as to how the algebraic specification
technique can be employed.

In general we have become impressed with the definitional power
pr ov ided by writ ing specifications in the form of recursive function
definitions , as r equired , e.g ., in making use of the Hoyer—Moore theorem
pr over . The structure of such definitions enforces on the prog r ammer a
st r ict di scipline that automatically results in clean partitions between
pieces of code, and the extensive induction capabilities of the Boyer—
Moore system prov ide the generalization “power” that substitutes for the
invention of inductive assertions in the strict Floyd—Hoare approach.
Consequently, much of our recent work has used the Boyer—Moore system ,
as exemplified in the body of this report.

B. Relation to Other Computer Science Laboratory Projects

In our Computer Science Laboratory there have been , over the past
few years, a number of related projects concerned with program
verification, either in the use or developnent of these techniques. The
existence of these related efforts  has been of mutual benefit to all of
the projects concerned . Thus , the present effort  has benefited from the
strong motivation provided by the need for enhanced deduction tools by

the appl ication—oriented proj ects. Li kewise , our project work dur ing
the past year in par t icular  has benefited by the availabil ity of a
preliminary version of the Boyer—Moore theorem prover for recursive
functions. Conversely, some aspects of the efficient decision

3 
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procedures for Presburger arithnetic developed largely on this project
have been used both in our work for Rome Air Developnent Center (on
verifiers for several versie s of the JOVIAL language) and also in a new
version of the Boyer—Moore system. Still other application—oriented
projects have needed (or will shortly require) sophisticated deduction
tool s for the verification of security and fault—tolerance properties of
system software. ~~ list some of these related efforts below.

Our work for Rome Air Developuent Center has been in progress
almost continuously since 1975. Under contracts F30602—75-C—0042 and
F30602—76—C—0204 (“Rugged Programming Dwironment” , Ftiases RPE/1 and
RPE/2) we developed early versions of program verifiers for (a subset
of) JOVIAL/J3 (191 and for the JOCIT version of JOVIAL [20]. Our
current contract with RMX2 (F30602—78-c—0031) calls for the developuent
of a programming environment for JOVIAL,-J73/I in ‘ ‘-iich an Air Force
programmer can design, implement, debug , and prov e correctness for
programs in this language. This contract runs until Cotober 1980. In
all three of these efforts we have made extensive use of deduction tools
developed initially under the present AFC~R contract.

Mutually beneficial relationships have arisen also with several
other government—supported projects in this laboratory. 1~ong these

are:

* “Equivalence—Preserv ing Transformations Between Programs,”
Pr incipal Investigator: Robert S. Boyer; supported under
ONR Cont ract N00 0l4—75—C—0816.

* “Theorem Prover for Recursive Functions , ” Principal
Investigator: Robert S. E3oyer ; supported under NSF Grant
1XR72—O 373 7A01.

* “Mechanizing the Mathematics of Computer Program Ar alysis ,”
Princ ipal Investigators: Robert S. Boyer and J Strothe r
Moore; suppor ted under NSF Grant MCS76—81425.

* “Me thodology for Hierarchical Design , Developuent, and
Verification of Computer Prograiris ,” Pr incipal Investigator:
Lawrence Robinson ; supported under NSF Grant D R74—l866l.

* “Developnent and EX~’alua t ion of a Software Implemented Fault
Tr lerant (SIFT) Computer ,” Proj ect Leader: J. Coldberg;
supported under contracts from NASA—Langley.4



* “Developnent of Software Fa ul t ~~lerance ‘I~chnique s ,”
Project Leader: P. Michael Melliar—S~ith; suppor ted under
contrac t from NASA-Langley.

C. Report Overv iew

Section II describes research by R. Shostak on the use of cycle
graphs for decision procedures with respect to l inear inequal ities over
the integers. This work has prov ided an algorithn which is more
efficient than several var iants of the Presburger algorit!in described in
our earl ier reports (21 ,3].

In Section III we prov ide in some detail an unconventional example
of pr ogram verification deal ing with the consistency proofs for an
implementation (in pure LISP) of a verification condition generator
(VCG) for a simple block—structured programming language. This ~ r~rcise

is unusual in two resp ects——first , it combines hand proofs with
mechanical proofs ( the latter executed on the Boyer—Moore theorem prover
for recursive func t ions) , second , it is only the second example of a ~~G
correctness proof of which we are aware (see [22 1) .  The proof is
structured into two overal l parts. The f i rs t  portion shows (by manual
proofs) tha t a set of algebraic specifications for the ~CG is cons isten t
with standard Hoare aX IOrP.S for the target language. “Consistency” is to

be interpreted here in the (one way) sense that the Hoare axioms are
satisfied by any function that satisfies the algebraic specifications ,
i.e. , that the Ibare ax ioms are derivable from the specifications. It
is known that the converse is not true , since a Hoare ax iomatization
does not determine a unique function for generating verification

conditions (nor even unique verification conditions). These algebraic

specifications are given in the style of Guttag [18] . The second

(mechanical) portion of the proof was carried out on the Boyer—Moore
system to show that the implementation satisfies the constraints of the
algebraic specifications. %~ bel ieve that this work represents a f i rs t
step toward countering an objection frequently voiced about work in
program prov ing : that the researchers in this field do not prove
correctness for their own software.

5
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Section IV of the report is concerned with the application of

inductive methods to set properties. The section focuses on a detailed
proof of one aspect of a clock synchronization algortithn recently
devised by Pease, Shostak , and ramp art .  This proof was likewise carried
out on the Boyer— Moore theorem prover . The motivation for this
algor it~ii~i arose in connection with the SIFT project under way in our
Laboratory under NASA—Langley sponsorship. A paper describing the
algorith’n is g iven in Appendix B.

Three other appendices contain subsid iary material as follows :

Appendix A contains traces of the operation of the recursive
function prover , and the formal definitions prov ided to that prover in
connection with the work reported in Section III.

Appendix C contains details of the machine proofs of the cloc k
synchr on ization algoritFin described in Section IV.

Appendix D summar izes the other activities (papers published and
conferences attended) that were carried out under this projec t dur ing
the final year.

6
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II DECIDING LINEAR INEQUAL I TIES
BY COMPUTING LOOP RESIDUES

A. Introduction

Procedures for decidi ng whet her a given set of linea r in eq u al i ties has solutions often

play an impor tant  role in deductive systems for program verification [ 19 .23 .28 ,30,32. 33.

40.45 1. Array bounds checks and tests on index variables are but two of the many com-

mon programmin g constructs that give rise to fo rmulas involving inequalities. A number of

approaches have been used to decide the feasibil i ty of sets of inequali t ies , ranging from

goal—d riven rewri t ing mechanisms 145 .26 , 27 .42 ] to the powerful simp le x tech n iq u es

2~
) ,3 1 .35 1 of l inear programming. The simpler methods are well suited to the small ,  trivial

problems that most often arise , but are insufficiently general. Simplex—based techni ques. on

t he other hand ,  are general and fast for medium to large problems. but they do not take

advantage of the trivial  structure of the small problems encountered most f requent ly .

The algori thm presented here retains the general i ty  needed in the except ional  case.

without sacrifice of speed and simplicity in the more typical situation . It bui lds on

V. Prat t ’s observation [38 .36 1 that  most of the inequali t ies  that  arise from verif icat ion

conditions are of the form x 
~~ 

y + c , where x and y are variables and c is a constant .

Pratt showed that  a con iunct ion of such inequal i t ie s  can be decided qui~ k 1v by e \ am i n l n g

t he loops of a graph constructed from the i n e q u a l i t i e s  of the conjunct ion.  We genera l i ie

th is  approach . fir st  to inequa l i t i e s  w i t h  no more t h a n  two ar i ab l e s  and wi th  arbi t rary

coefficient s , and then  to arbitrar y linear ine qualit ~ Our generatiiation red u ces to Pratt ’s

test for inputs having the s imp le s t r u c t u r e  he descr ihes .

I lie d i scu ss ion  is presenicd in ~i s  se~~l i o n s  se~ t i o n s  B and ( are concerned w :th pre-

l iminary  d e f i n i t i o n s  and with .i s t a t e m e n t  ot the met h od b r  inequali t ie s  wi th  two vari-

ab les and a rb i t r . i r ~ coct t i~ ~~ ts  ~~ tu ’n I) ~l i s ~, usses Is s ue s of cOTU p l exi t~ and usefulness

for in teger problems . and rchit c~ th e m e t  u~d to  t’ r i i  ‘s . Sec t I ons  I- and 1~ deal w ith th e

exten sion of the method  to sets ha %Ing s i r k  I inequalit ies and to s et s  with arbitra ry linear

inequali ties . The last sec t on prt ’sen t s a proof ot th e  theorem t h a t  underlies the method .

7
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B. Definitions

Let S be a set of linear inequalities each of whose members can be written in the

form ax + by ~ c , where x , y are real variables and a . b , c are reals. Without loss of

generality , we require that al l variables appearing in S other than a special variable v 0 .
called the zero variable , have nonzero coefficients. We also assume that v0 appea rs on l y

with coefficient zero.

Construct an undirected multi -graph G from S as follows. Give G a vertex for each

variable occurring in S and an edge for each inequal i t y .  Let the edge associated with an

inequality ax + by ~ c connect the vertex for x with the vertex for y. Label each ver tex

with its associated variab le * and each edge with its associated inequal i t y .  G is said to he

the graph for S.

Now let P be a path throu gh G . given by a sequence v 1 . ~
‘2 , • , , , v 

~~~ 
of vertices

and a sequence e 1 , e2 .  . . . , e~ of edges , n ~ 1. The triple sequence for P is given by:

(a 1,  b 1 , c 1 ) , (a 2 .  b2 ,  c2 ) , . . . , (a r . b~ , c~ >

where for each i, I ~ i ~ n , a1 v 1 + b~v1~ ~ c~ is the inequality labeling e . ** P is admis-

sible if , for I ~~ i ~~~ n — I . b1 and a 1.,, have opposite signs: i.e., one is strictly positive and

the other is ne gative.

In tu i t ive ly ,  admissible paths correspond to sequences of inequalit ies that  form tran-

sit ivity chains. For example . the sequence x ~ y ,  y ~ z. z ~ 3 gives rise to an admissible

path . as does

2x~~~3 y — 4 , 2y~~~4 — z . —z~~~x

Note that  the sequence :

x ~ v , y ~ z . —z ~ r

in what follows , it is nota t ion al l ~ convenient to write v for both the variable v and the vertex asso-
ciated wit h that  variable.

•~ In the case where v 1 and v1.,, happen to be identical (i.e.. e1 is a self-loop 1. an arbitrary choice is
made as to the ordering of the fi rst two components of the associated tri ple.

8
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cannot label an admissible path , since the coefficients of z have the wrong relative

signs.

A path is a loop if its fIrst and last vertices are identical. A loop is simple if its

intermediate vertices are distinct.

Note that the reverse of an admissible loop is always admissible , and that the cyclic

permutations of a ioop P are admissible if and only if a 1 and b~ are of opposite sign .

where (a 1 . b 1 , c1 ) . . . (a n , b~ , c~ > is the triple sequence for P. In this case , we say P is

permutable . Note also that, since v0 appears in S only with coeffici ent 0, no admissible

loop with initial vertex v 0 is permutab le.

Now define , for a given admissible path P. the residu e inequality of P as the inequal i ty

obtained from P by applying transitivity to the inequalities labeling its edges. For example.

if the inequalities along P are

x~~~2 y +  l . y ~~~2 — 3 z . —z~~~w

we have:

x~~~2y + I ~~~ 2 (2— 3z )+ I~~~ 2(2+3w )+ 1 6 w+ 5

The residue inequality of P is thus x — 6w ~ 5.

More formally, define the residue r~ of P as the triple (a r .  b~ . c~ > give n by:

(a p . b~ . C p ) = (a 1 ,  b 1 . c1 ) * (a 2 . b 2 .  c2 > * - . . * (a s . b~ . c~>

where (a 1,  b~ . c 1 > . . . (a n .  b~ . c~> is t he tri ple sequence for P and where * is th e binary

operation on triples defined by:

(a . b. c) * (a ’. h ’. c’) = ( kaa ’. — kb b ’, k (ca ’ — c’b))

aa n d k —r- -a

The residu e inequali t.v of P is then given by ap x + b~y ~ ci,, where x and y are the first

and last vert ices , respectively , of P.
9 
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It is straigh tforward to show that * is associative , so th at rp is in fact uniquely defined.
The idea that  the residue inequal i ty  of a path is implied by the inequalit ies labeling the path
is expressed in the following lemma:

Lemma I . Any point (i.e.. assignment of reals to va riables ) that  satisfies the inequal i t ies
label ing an admissible path P also satisfies the residue inequal i ty  of P.

Pt. Straigh tforward by induction on the length of P.

C. Procedure for Inequalities with Two Variables

In the case where P is a loop with initial  vertex , say. x , Lemma 1 asserts that any

po in t satis f ying the inequalities along P must also satisfy a~ x + b~ x ~ c~ . If it happens

t hat  a p + b~ = 0 and c p < 0. the residue inequali ty of P is false , an d we say t h at P is an

in f€ ’auhle loop.

It follows that a set S of inequalities is unsatisfiable if the graph G for S has an

infeasible loop. The converse , however , does not hold in general. Figure 1 , for example.
shows the graph for S = ~x ~ y , 2x + y ~ 1 , z ~ x. w ~ z. z ~ I + w . z ~ ‘4 Although

S is unsatisfiable , the graph has no infeasible loops , simple or otherwise.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Z X

x

F IGURE 1 GRA PH G F 0 R S I x ~~~y , 2x ~~~y~~~ 1 , z ’ x , w ’ ~~z , z ( w + 1 , z � ’ ~ l
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The gist of our main theorem is that G can be modified to obtain a graph G ’ tha t

has an infeasible simple loop if and only if S is unsatisfiable:

Definition: Let G be the graph for S. Obtain a closure G ’ of G by adding. for each

simple admissible ioop P (modu lo permutation and reversal ) of (i a new edge

labelled with the residue ine quality of P.

Note that closures are not necessaril y uni que , since the initial  vertex of each permutable

loop can be chosen arbitrari l y.

Theorem: S is unsatisfiable if and onl y if G ’ has an infeasible simple loop.

Figure 2 shows the unique closure of the graph of Figure 1. Note that  the onl y lo op

of G contributing an edge to G ’ is the xyx loop. The v0 xzv 0 loop of G’ is infeasible (hav-

ing residue (0 , 0, _ 1/ 3 ) :  hence the example S. according to the theorem , must be unsatisfiable.

W
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

X

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Y

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FIGURE 2 CLOSURE OF G

We show later tha t  any cyclic permutat ion of an infeasible permutable loop is itself

infeasible , and that the reverse of an infeasible loop is also infeasible. We thus have the

following decision procedure for satisfiabi lity of S:

11



( I )  The simple admissible loops of G are enumerated modu lo cyclic permuta t ion
and reversal , and their residues are computed. If any loops are found to be
infeasible , S is unsatisfiable.

( 2 )  Otherwise, the closure of G is formed by adding a new edge for each residue
inequali ty.  The residues of all newly formed simple admissible loops are now
computed. If any are found to be infeasible. S is unsatisfiable. Otherwise S

has solutions.

Note tha t  th is  procedure , as stated , does not actually construct a solution if S is
feasible. The proof of the main theorem , giveii in Section G . provides such a construct ion.
Note also that the new admissible loops formed in (2) must have initial vertex V 0 .

D. Efficiency and Other Issues

Any implementation of the procedure must , of course , incorporate some means of
generating the simple loops of a graph. For this purpose , several algorithms exist
(Johnson [34], Read and Tarjan [39]. Szwarcfiter and Lauer [43] ) that operate in t ime
order Q~Vl + lEl), and space order IVI + El. where ~ is the number of loops generated.
These algorithms are easily modified to generate onl y admissible loops wi thout  adverse ly
affecting efficiency. Since each loop has length on the order of V I . these algorithms
require li t t le more time than that needed for output .  A graph m a x .  of course , have qui te

a few simple loops - exponentially marry ( in i - l~. in fact, in the wors t case. One can
show that the  procedur e we have described , like the simplex method,  exhibi ts  exponen t ia l
Worse—case asymptotic behavior. (See a l so 137 .44] .

In practice . however , one does not encounter such behavior. The sets of inequal i t ie s
that  arise from verif icat ion conditions usually have the form of t rans i t iv i ty  chains. The
corresponding gra phs are tree lik e . seldom having more th an a few loops. Most of the
loops that  do occur are 2—loops , which are easily tested at the t ime the graph is
constructed.

V. Pratt [38] has noted that  these sets often fall w i th in  wh at  he has termed
SCparat fo~i theoi ’t . All the inequal i t ies  of such set s are of the  form x ~~ ~ + e. The

residue of a loop whose labeling inequali t ies  are of this  form is gi’.en by one of
( I , —I , m> . ( —I , I . m> . where m is the sum of the constants c around the loop. The graph

12
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for a set S in separation theory is thus its own closure , so the main theorem of the last

section reduces , in this case , to Pratt ’s observation that such a set S is infeasible if and
only if the sum of the constants around some simple loop is negative. Pratt notes that

thi s condition can be tested in order ( I V I  + lE l ) 3  time by taking a m ax/+ transit ive

closure of the incidence matrix of the graph. In practice, however , it may be more effi-

cient to generate loops using one of the algorithms mentioned earlier.

Note that a set of inequalities in separation theory with integer constants is integer

feasible if and only if it is real feasible. While the main theorem therefore decides integer

feasibility in thi s case , it cannot decide integer feasibility in general. it has been observed
] 4 1 ] ,  however , that the transformations Bledsoe [24 ,25] descri bes for reducing formulas
in intege r ar i thmet ic  to sets of inequalit ies tends to produce sets that are integer feasible
if and only if they are real feasible. The main theorem thus provides a useful , but not

complete. test for integer feasibili ty.

E. Strict Inequalities

The procedure is trivially generalized to handle strict inequalities (i.e.. inequal i t ies  of

the form ax + by < c). Let an admissibI ~ loop be strict if one or more of its edges is

labeled with a strict inequali ty.  A strict loop P with residue (a r .  b~ . c~ ) is infeasible if

+ b~ = 0 and c~, ~ 0. If the definition of closure is now modified in such a way that
new edges arising from strict loops are labeled with strict inequalities , the main theorem

still holds.

F. Extension to Arbitrary Sets of Inequalities

The method can be further generalized to sets of ine quali t ies  with arbitrary coeffi-

cients and arbitrary numbers of variables.

The basic idea is illustrated by the following example. Consider the set

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note that the inequality z ~ y — x + I has three variables. As shown in Figure 3, we

choose two of the three (say z and y) as the endpoints of the edge corresponding to this

~



inequality in the graph G for S. The term (—x + 1) becomes the “constant” of this
inequality.  The residue of the only simple loop (y z y) is given by

( 1 , -1 , 0) * ( 1 , -1, -x + I)

and is computed “symbolical ly ” to obtain ( 1 , —1 , —x + 1). Note that this loop is

infeasible unless —x + I ~ 0. If the residue inequa l i ty —x + I ~ 0 is now added to the
grap h. an infeasible simple loop (v 0 xv 0 ) results , thus making S unsatisfiable.

2 ’

FIGURE 3 GRAPH G FOR lx ~ y, y ~ z , z ~ y - x + 1, x ~ 21

We now describe the procedur e for an arbitrary set S. We assume tha t  the ~ariahles
of S other than V 0 are ordered in some way. Each variable that  is the lowest or second
lowest ranked variable in even inequality in which it appears is said to he a pr i~nari

rariable. We adopt t he convention tha t  the edge corresponding to a given inequ a l i t ~ is

always atta ched to the two nodes corresponding to its primary ~aria hles.  If it has on 1~ one
pri mary var iable ,  one end is a t tached to v0, and if it has no primary ~a r iahles . both end s
a r e a t t a c h ed to v 1 .  The procedure is as follows:

I ) Compute  a closure G ’ of the graph G for S as usual ,  eva lua t ing  residues ‘ s~ 1))—

ho l ical l y ” as in the example. If G’ has an infeasible loop, terminate  r e tu rn ing
“unsatisf iable. ” Otherwise , if all the variables of S are primary . te rmin a t e
r e t u r n i n g  “satis fiable. ”

( 2 )  Otherwise , repeat the procedure using the set of residue inequali t ies  of G ’ in
place of S.

14

—-‘

~

-

~

- . —

~

- -  ., - - ,~~~~~~~~~~~ - ~~--—~ 



~
—

~
- -

~
-.—-

~ -- 

Note that the procedure must terminate since the numbe r of non—primary variables must
decrease each iteratio n. One can prove as an exten sion of the main theorem that the gen-
eral procedure is complete as well as sound.

R. Tarjan * has observed that  any set of inequalities can he polynomially transformed

to one with no more than three variables per inequal i ty  through the addition of ne~ vari-

ables. The inequali ty w + x + y + z ~ I , for example , is replaced by w + x ~ v , w + x ~ v .
v + y + z ~ 1. For sets with inequalities having no more than three variables , only two

iterations of the procedure are ever re qu ired. There does not seem to be any fast way to

transform a set of inequalities to one having inequalities with no more than two variables.

G. Proof of the Main Theorem

It follows from Lemma 1 and from the definition of closure that a set S of inequali-

ties (each having no more than two variables) is satisfiable if and only if 5’ is unsatisfiable.

where S’ labels the edges of a closure of the graph for S. If we define a closed graph as

one that is a closure of itself, the main theorem can thus be restated as follows:

Theorem: I f G is a closed graph for S, then S is satisfiable if and only if G has no

infeasible simple loop.

The proof of the theorem requires a number of technical lemmas. Proofs are omitted for

the more trivial of these.

Notation: Where P and Q are paths , let PQ denote the concatenation of P with Q.

Lemma 2. If P and Q are admissible paths , then PQ is admissible if and only if bQ and

a~ are of opposite sign .

.\ota tion:  Let T = (a , b , c> be a triple of reals . Then T~
’ denotes the triple (b . a, c).

Lemma 3. If T1 ,T2 are triples, T1 a T, = (12 * T 1 ) .

Carrollari 4. If Q is the reverse of an admissible path P. then r~ = r~’.

Coral/ an 5 The revers e of an infeasible loop is itself infeasible.

*Privaie Communication. 15
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Lem~na 6. Any permutation of an infeasible permutable loop is infeasible.

Pf. Say P is infeasible and P’ is a permutation of P. Then there are paths Q and R such
that P = QR and P’ = RQ. Thus ,

r~ = (ka Q aR ,  — kb Q b k .  k(c Q ak — C R bQ ))

and

rp = (k ’aR aQ ,  -k’bR bQ ,  k’(cR aQ - C Q b R ) >

a R aQwhere k = — and k ’ = r’— . Note that by admiss ibility of P and P . both a~ anda R I a0 1
aQ are nonzero. By infeasibility of P, a~~aQ — bQ b R = 0 and k(c Q a R — cR bQ ) < 0.

a
R (  

- cR b
Q) 

< 0

cQ b R
. . a R b

Q( aQ 
_ c

R) 
<o

c Q bQ
cR — 

a 
< 0  (since a R an d b Q have opposite signs )

0

k ’(c~~a~ — cQ bR ) < 0

Recalling that  a~ aQ — b0 b R = 0, we th us have that P ’ is infeasible
Q.E .D.

Notation: Where u. v , w are reals, let u mean that u < v if w ~ 0 and u > if w < 0.

cPDefinition Where P is an admissible path . the discriminant d~ of P is given by
a~ + b~

Note that  an infeasible  loop is one with discr im inant  ~~~~~ .

16
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_ _ _ _ _ _  _ _

a0Lemma 7. If PQ is an admissible loop from v 0 to v 0 , then P0 is infeasible iff d~ >
ap

it ’fd ~ < dQ .

,‘solation : In the following, let (a 1 , b 1 . c 1 ). (a 2 ,  b2 ,  c2 > , (a 3 ,  b3 , c3 ). and (a s,. b~ . ci, ) ,

respect is e l s ,  de n ote the res i dues of P 1 . P2 .  P3 . and P.

Lemma ~~ . If G is closed and has an infeasible loop from v0 to v 0, G has an infeasible

simple loop.

P1 Let P be a shortest infeasible loop from v0 to v0 in G. If P is simple , we are done.

Otherwise , si n ce , by admissibil i ty ,  the intermediate vertices of P are dist inct  from V (~ .

P ca n be expressed P1 P2 P3. where P2 is simple. We claim that P2 is also infeasible.

Suppose not.  Then either a., + b , = 0 and c2 ~ 0. or d~ 2 is f inite.  In the fo r-

mer case, a 2 and b , have opposite signs. It follows from Lemma 2 that  b 1 and a 3
must as well , hence P 1 P3 is admissible. Now since

rp 1 p, 
= (0. b 1. c 1 > * (a 2 .  b2 .  c2 > = (0 , —b 1 b 2 .  c 1 a2 — c2b1 )

we have:

c 1 a 2 — c2 b 1 c2 /a2\ c2
~~~~~ = 

—b 1 b . 
= - ~‘- —~~~— 1d~ 1 = ‘~— + d ~ 1 .

Since P is infeasible ,  we have from Lemma 7 tha t

c2 a 3
— + d ~ > d~3

Th us .

a 3 b2
c2 + h ,d~ > b2 d~~

C 2 + h 2 d p~ < b 2 d~ 3 (since a3 and b2 have opposite signs)

17
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b,d~ < b,d p 3 (since c2 ~ 0)

d~ < d~3

dp~ dp~ (since b, and a 3 are of opposite sign).

But then P 1 P3 is infeasible by Lemma 2 . contradict ing our assumption th at  P is the
shortest such loop.

Now if d~ 2 is f inite ,  the closedness of G provides tha t  some vertex x on P2
must be connected to v 0 via an edge E labeled ax ~ c, where c a  is the d i s cr i m inant
of some cyclic permutation P (possibly = P2 of P2 .  We now have three cases:

Case I. P2 is not permutable.

Then P~ = P2 .  a = a 2 + b 2 .  c = c2 ,  and by Lemma 2 . a 2 an d b 2 are of the same
sign. Also , a must be of this sign : hence both P 1 E and EP 2 are admissible.  An
argument  similar  to the one above gives that one or the other of P 1 E . EP , must be
inf easible , cont rad ic t ing  the shortness of P.

Case II. P2 is permutab le and P~ = P2 .

In th is  case, we have from Lemma 2 that  a 2 and b2 have opposite signs : hence
a n d a~ do as well. An argum ent similar to that  given earlier shows that  one of
P1 P3. P1 E. and EP2 must be infeasible . again contradict ing the shortness of P , .

Case Ill. P2 is permutable and P~ � P2.

Let P4 be the in i t i a l  suhpa t h of P, which termin ates  at x . and let P c be the  f ina l
subpath of P2 which originates at x Is o that  P, = P4 P5 1. In this case, it can be
shown that  P 1 P3 is admissible , that  one of P~ P4 F , EP 5 P 3 is admissible ,  and tha t
one of these three paths must  be infeasib le. The shortne ss of P is thus  once again
contradic ted .

Q.I .D.

18
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Theorem. Let G be a closed graph for S. Then S is satisfiable if and only if G has no

simple infeasible loop.

P,L It follows from Lemm a 1 tha t .  if G has a simple , i nfeasible loop. S must be unsatis-

fiable. Conver sely, suppose G has no such loop. We will show that  S is satisfiable

by constructi ng a solut ion.

Let v 
~ 

be the variables of S other than v 0 . We construct a sequence

V V r of r eals and a sequ en ce G0. G G1 of graphs indu ct ively as

fol l ows:

( I )  Let ~~ - = 0 and G0 G.

(2) Suppose V 1 and G 1 have been dete rmined for 0 ~ i <j  ~ r. Let

sup 1 = min~ d~ lP is an admissible path from vj to v ç, in G~_ 1 and a~ > 0}

in f ~ = max ld p IP is an admissible path from v 0 to v 3 in G~_ 1 an d b~ < 0~~.

(where it is understood that  minO = oc and max~ = ~oo), Then let be an~
value in the inter val [in f ~. sup~]. (We show momentaril y that inf ~ ~ sup~.)

Let G. be obtained from G~_ 1 by adding two new edges from v3 to v 0 ,

l abe led v3 ~ ~~ 

and v~ ~ V1 . respective ly.

To ensure tha t  the ~ ‘s and G~’s are well defined , we must show that .  for

I ~ j ~ r . inf 3 ~ sup~. It will then remain to show that  the V~’s do indeed give a

solution for S.

We need the following claim :

Claim. (i) For I ~~j ~ r, in I~ ~ sup~

(ii) For 0 ~ j ~ r . has no infeasible simple loops.

pj: By induction on j.

Basis . j = 0.

In this case, i i )  ho lds vacuousl y, and ( i i i  holds since G0 = ( .

Induction Step. 0 <j  ~
For i .  suppose . to the contra ry . that  in f ~ > sup3 . Thcn in G1_ 1 admissible

paths P~ . P2 exis t  f rom v 0 to v~ and v j to v 0 . respecti vely. with h~ 1 < 0.

19



ap 2 > 0 , an d d~ 1 > d~2 . By Lemma 2 , P I P2 is an admissible loop, and by

Lemma 7 . P I P2 is infeasible. By Lemma 8, then. G3_ 1 h as a sim ple inf easible

loop, contradictin g ( i i )  of the induction hypothesis.

For (ii ) , suppose G3 has an infeasible simple loop P. Since G~, 1  has no

such loop, and since the loop formed by the two new edges added to to

obtain is not infeasible , P (o~r its reverse ) must  be of the form P E , where E

is one of the two new edges (say the one labeled v3 ~ the ot h er case i s

handled simi lar ly) .  and P is a path from v 0 to vj in G~_ 1 .  But then.  by

Lemma 7 . d~ . > d~ = V~. contradicting V~ ~ inI~ ~ dr.. (Note that b~ . <0

from the admissibil i t y of P E . )
Q.E.D.

It now remains to show that the ~ ‘s satisfy S. So let ax + by ~ c be an inequa lit~

of S. We claim that  a~ + h~ ~ c. We treat the case in which a > 0 and b < 0: the

other cases are argued similarl y. Let E be the edge labeled ax + by ~ c in Gr Then.

where E 1 is the edge labeled ~ x in G1 , and E 2 is the one labeled y ~ ~~ . E~ EL 2
forms an admissible loop. The residue of thi s loop is

(0 , _ l . _
~) * ( a, b . c ) * ( l . O. c) (0 . 0. —a~~— b ~~+ c )

Since, by the claim proved above , and by Lemma 8. has no infeasible loops from

to v0 ,  we have — a .~ —b~ + ,. ~ 0. Thus a~ + b~ ~ c as required.
Q. F .1) .
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III CONS ISTE!’1Y PRO(1~’S FOR A SIMPLE VERIFICATI ON CONDITION GENERAIOR

A. Introd uct ion

This  section of the report describes an appl ication of both
mechanical and human theorem prov ing to the proof of correcthess of a
simple verification condition generator (VCG) . It will be recalled that
the \)CG is an imgortant component of most program verifiers. Its

pur~xse is to transform a progra’n module , al ready annotated with
assertions , into a l ist of theorems fran which the control semantics of
the progr am have been el im inated . That is , the input to a \~ G is an
annotated program module and the output is a l ist of ‘ stat icized ’
theorems that must be proved to ver i fy  that the pr ogr am and assertions
are consistent. Thus, the ‘~~G must incorporate knowledge about the

semantics of the prog r anm ing language, in particular , its control
semantics.

It is, therefore , a matter of considerable importance that these
semantics are properly reflected in the ~CG. If they are not , the
verif icat ion cond it ions (VCs) generated by the t.CG may be inappropriate

to the program under verification . They may be either too weak or too
st rong . In the f i rs t  case the ver i f i e r  may be able to report an
incorrect program as “verified” (unsoundness of the ver i f i er ) . In the
second case the faul ty ~~s may be impossible to validate even when the
pr ogr am is actually correct ( incc*npleteness) . Since theorem provers are
(necessa rily) incomplete over most domains of reasoning , the latter
problem is less serious , but it is still a problem . However , to be able
to guarantee that a ~CG correctly incorporates the semantics of a
pr ogramming language it is necessary (as with any formal proo f of
consistency) to hav e a fo rmal description of these semantics. This
desc r iption will  be prov ided in Subsection C.

In Subsection B we define the concrete and abstract syntax for a
simple programming languag e SL that will serve as the vehicle for this
‘.~ G verif icat ion.

21 
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Subsections D and E contain the proofs of consistency for the ~~~
These proofs are carried out in ts~ stages:

* First , in Subsection D, we shal l demonstrate by means of
hand proofs (i.e., conventional, but quite rigorous
mathematical arguments) that the formal semantic definition
for our language is satisfied by a set of algebraic
specifications (in the style of Guttag ) for the
verification condition generator.

* Second , we use the I~~cursive Function Theorem Prover of
Hoyer and t.bore to prove (entirely automatically) that an
imple’nentation of \,CG satisfies the algebraic ax ioms. The
detailed proof traces produced by this system appear in
Append ix /~. However , the general discussion of what was
proved and how the Prover was set up to handle the proofs
is given in Subsection E below.

The f i rs t  step in the consistency proof entails making a
correspondence for each of the statement types of the language be tween a
[bare axiom for that construct and one or more of the algebraic

specifications. ~~ have not seen arguments of this sort carried out
elsewhere before , at least not at this level of formal isit . The proofs
are quite straightforward , but they were not entirely free fran
surpr ises. In particular we hav e realized , as a result of carrying them
out, that several quite distinct notions of “assertion” are cu r rent in
verif icat ion methodology, that each has distinct advantages and
disadvantages, and that they lead to different sorts of verification

conditions. In addition, each type is amenable to seemingly different ,
but actually equ ivalent , ax iomatizations in terms of Hoare logic . These
equivalent ax iomatizations for the assertion constructs shed l ight  on
the general problem of semantic def in i t ion .

The second step-—that of mechanically prov ing consistency between a
LISP implementation of the function ‘~ C arid its algebraic
specifications——may at f i r s t  glance appear to be t r iv ial , because of the
close correspondence between the LISP code of the implementation arid the
LISP—like lang uage of the specifications. Horeover , unl ike  some \~ Gs ,

L 

this implementation was wri t ten in pure applicative LISP. Nevertheless ,
it turned out to be muc h harder ac tua l ly  to get the recursive function
tl~eorem prover to prove all  the required theorems than to carry out the

22



hand proofs of the first step. In part this was di.~ to technicalities

associated with the mechanical proving system , particularly conventions
regarding “ quoted” atomic names and the need for specifying fixed
numbers of arg uments for functions.

sane of the proofs were nontr iv ial because the implementation of
VCG to be verified make s use of an intermediate funct ion \~~R. This
function is like the specified func t ion ‘KG, except that it operates on
a reversed statement l ist for reasons of efficiency. Thus , ‘.~ R is
recursive throu gh CD1~ (in the normal way) , whereas ‘.~ G is specified by
defining it to recurse by removing the last element of the statement
list forming the first  argument to \)CG. The structur e of \~ R arid its
relation to ‘~2C was, of course, reflected exactly in the definitions

pr ov ided to the Boyer—Moor e system. Thus, the machine proof helps to
certify that no errors have crept into the implementation as a result of
this inversion of lists of statements in the recursive calls. In fact ,
one such error was detected in the process of verification.

B. ~yntax for a Simple Language

Below we give definitions of the syntax and semantics for the
simple block—structured language SL which serves as a vehicle for our

stud y of \~ G correctness proofs. ¶I~o versions of the syntax are given
for SL—a set of BNF product ions for the concrete source language , arid
(somewhat less formal ly) similar definitions of the syn tax of abstract
fo rm s of the nonterminals of the language. The abstract forms are
intended for use as internal representations to be input to a
verification condition generator.

1. Concrete Syntax for SL

The modified BNF synt ax equations for SL are g iven with
nonterm jnals in lower case characters , arid te rm inals shown in upper case
(or quoted where there is no corresponding upper case character) . The

23
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metal ing uistic s~ ubol ‘ i ’  is used to separate alternative rightharid
sides.

Stats ::= stat I stats Stat

stat ::= empt~~stat I assert\stat I assune\stat
I prove\stat I asst\stat I block\stat
I ife lse\stat I wh ile\stat I goto\stat
I label\sta t I abort\stat

empt~/\stat ::= ‘ ; ‘ I SKI P ‘ ; ‘

assert\stat : : ASSEWI’ pred ; ‘

assune\stat : ASSI!IE pred ‘ ; ‘

prove\stat ::= PBOVE pred ‘ ; ‘

asst\stat ::= var ‘ : ‘ expr ‘ ; ‘

block\stat BEX IN stats END

ifelse\stat : := IF boolexpr ~~EN stat ELSE stat ENDIF’

while\stat ::= WHILE ‘ ( ‘  ASSERTING pred ‘ ) ‘  boolexpr
IX) stat ENE~JH I LE

goto\sta t ::= GO’IO label ‘ ( ‘  ASSERTING pred ‘ ) ‘  ‘ ; ‘

label\stat ::= label ‘ : ‘

abor t\stat ::= ABORT ‘ ; ‘

The nonterminals pr ed , boolexpr , expr , var , arid label are not
defined here. Any standard syn tax for pred icates , Boolean expressions ,
expressions, (simple) variables, and label names, respectively will
serve.

2. The Abstract Synt ax

The abstrac t forms of the above constructs are LISP S—expressions
defined as follows :

assert\statA ‘ ( ‘  ASSERT pred A ‘ ) ‘
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asstsne\statA ::= ‘( ‘  ASSt}IE predA ‘ ) ‘

prove\statA :: ‘( ‘  PI~DVE predA ‘ ) ‘

asst\statA :: ‘( ‘  ‘ : ‘ varA expr A ‘) ‘

block\ statA : := BFX IN . statsA

ifelse\statA ::= ‘ ( ‘  IF boolexprA statA statfi ‘) ‘

while\statA : := ‘( ‘  WHILE pred A boolexpr A statA ‘ ) ‘

goto\sta tA ::= ‘ ( ‘  GO’IO label pred A ‘ ) ‘

label\statA ::= (‘ LABEL label ‘ ) ‘

empt~~ statA :: ‘ ( ‘  SKI P ‘ ) ‘

abort\statA : := ‘( ‘  ABORT ‘ ) ‘

statsA := ‘ ( ‘  statA ‘) ‘ I statsA @ ‘ (‘ statA ‘)

statA ::= assert\statA 1 assuiie\statA I pr ove\statA
I asst\statA I block\statA I ifelse\statA
I whil e\statA I goto\statA I label\statA
I empt~A,~statA I abort\statA

Notes: 1. ‘ .‘ denotes Lisp cons
2. @ denotes LISP append , as an infix operator.
3. Each nonterminal ending in the letter A denotes the abstract

form corresponding to the concrete nonterminal with that A
deleted .

Just as with the concrete syn tax , we do not specify the abstract
syntax for expressions , Boolean expressions , arid predicates. %4tat we
have in mind are the sorts of S—ex pression forms cur rent ly  used in
several program ver i f ie rs  [e.g., (PL~~ x (TIMES y z ) )  for the expression
x+y*z , and ( AND ( EQUAL A B) (LE SSP C D) )  for the Boolean expression
(A B ) & ( C ( D ) ) .  However , the reader is free to imagine his own expression
lang uage . Simple variables arid labels are , of course , atom ic ~~rds.
Thus they are not affected by the transi t ion fran concrete to abstrac t
syntax .
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C. Formal Semant ics for the Language SL

In general , three kinds of formal semantics have been used for
language specification——axi omatic, operational, a rid denotational
semantics. %~ shall be concerned here entirel y with an ax iomatic
definition since this type is most directly matched to the issues in
question——the relations between preconditions arid çostconditions across
an execution of program segments. Horeover , both of the othe r kinds of
semantic definit ion entail questions , more intimately concerned with
execution models, which are largely irrelevant to the matter of \‘1C
generation. In brief , the othe r modes of semantic defini t ion l ie at too
detailed a level of abstraction——they say too much——whereas an ax iomatic
defi nition tells us exactly what needs to be known about a language in
order to gener ate ~~s for it.

The axiomatic method of semantic defini t ion (due to Hoare 12 ) )
requires the provision , for each statement construct of the language ,
say the statement “ stat ” , either an ax iom ( usually called a “ Hoare
axiom”) of the form :

P{stat)Q

or an inference rule (a “ I-bare rule ”) of the fo rm :

Dl,...,~~P[stat}Q

where P and Q are pred icate expressions in some base logic , and the Di
are either s imilar  pred icate expressions , or othe r (Hoare) formulas ot
the form p{. . .)q.  The Di are called subsidiary deductions, and they
must be val idated from ax ioms of the system , or by appl ication of one or
more inference rules to these ax ioms . The ax ioms themselves are just

that——they are “ facts” to be assumed as basic to the inference system.
In general , they define the semantics of the primitive statement types
of the language, such as assigrinent, j umps , abort , and also the

assertion constructs (assert arid assume statements) , which are needed in
order that F’lo~~—U oare ver i f ica t ion may be appl ied . The meaning of a
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Hoare formula such as p{ stats)q is that if execut ion of the program
segment stats is initiated at a control point where the pr ed icate p
(over the program var iables) is true , and if execut ion of stats canes to
a pr oper termination , the predicate q must be satisfied (by the current
values of the program var iables) at that termination point .  The
predicates p and q are referred to as precondition arid postcoridition,
respectively. The b are inference rules , in general , ax iomatize the
compound statement types of the language (such as its block, conditional
or iterative statements) , i.e., those which contain statements as
syntactic elements. The verification of such compound statements

clearly entail s the establisI-inent of subsid iary deductions about the
execution of their constituent substatements, hence the need for the
subs idiary formulas Di in these inference rules.

In addition to the bare inference rules relating to particular
lang uage constructs , cer tain language independent rules are also needed
wh ich are basic to the whole formal i~ n . These basic rules are l isted
below without discussion.

1. The Consequence Rule

P—>Pl,Pl(S}Ql,Ql—>Q
P[S}Q

2. The Conj unction Rule

P( S}Q, P{S}R
PI S }Q&R

3. The Disjunction Rule

P( S}R ,Q ( S}R
(P or Q )[ S I R

4. The Concatenation Rule

P{S 1 }Q,Q t s2 }H
Pf S I;S2 IR



The above basic inference rules may be used , together with the
other (lang uage—specific) rules arid ax ioms in carrying out inferences
about program execution in the bare calculus. Note carefully that all
of the rules prov ide suffic ient conditions for such inferences. cne
must be careful to resist the temptation to appl y them in the other
direction . The Floyd—Hoare approach , which we follow , proves (part ial)
correctness by allowing a human prover (possibly aided by a machine) to
invent appropriate inductive assertions , Qi , such that all execut ion
paths from input to output are “covered” by proven bare formulas ,
Qi{seg)Qj , where seg is the program segment lying between the assertions
Qi and Qj. In view of this relaxation , one can be content also with
axiomatizing the constructs of the prog r anining language by bare
“ su ff ic iency” rules , as we have done . This becomes significant
part icularly for those constructs that impl icitly cal l for the invention
of ind uctive assertions, e .g . ,  the iterative (while.. .do) statement.

Thus , our v iewpoint regarding proof of p art ial  correctness is that
the program to be verified has already been annotated with induct ive
assertions at all necessary points. These include loop invar iants for
the while . . .do statement (already mentioned) and mandatory assertions at
every labelled statement. The latter may not always be necessary (since
scrie labels may never be targeted) , but the j ob of the ‘~~G is greatly

simplif ied if we make this assumption , and if we, moreover , assume that

a preprocessing of the program has incorporated the target label
assertion lex ically into each goto statement addressing this label .
Thus , we shall write gotos as:

(IYIO label (ASSERT ING prod);

rather  than simply as:

(D’It) label ;

As we shall see , this convention permits us to express the bare
rule fo r cXYIOs as:
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P-)pred
PIGO’IID label (ASSERTING prod) }Q,

or , still more simply as an axiom:

(DW Axiom: pred{GO’IO label ( ASSERTING prod) }Q.

The more usual alternative is to posit the ax iom, P{GO’IO

label) fal se . Then , since fal se—>Q is tautologous, one has (by the
Consequence Rule)

P {GCYrO label) pr ed

regardless of the predicate prod! We f ind the f i rs t  approach more
intuit ive and satisfying.

Similarly, the bare rule for WH I LE statements is usually given as:

r&BfS}I
I{WHILE B IX) S EN1i~1HILE)I& B

This latter entails the invention (by the human or machine

verifier) of the auxiliary assertion I, which does not occur in the
WHILE statement itself. It seems more natural to incorporate the
inductive assertion I directly in the iteration statement, in the form:

WHILE (ASSERTING I) B IX) S ENIIJHILE.

This suggestion has already been made from several quarters (see , e.g .,
Wegbreit 14 6 ) ) ,  often with the use of other key ~~rds , such as
“maintaining” , in pl ace of “asserting ” .

()ue furthe r notion is ~~rth mentioning before we proceed on to more
specific matters. We wish to single out those bare axioms of the form :

pre{S}post

where post = Q is a (free) pred icate variable , rathe r than an arbitrary
expression, but where pre may still be any predicate expression .
Examples of this form are:
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Q&A(ASSERT A}Q

Q{SKIP }Q

A->Q fASStJME A)Q

We shall refe r to such spec ial I-bare ax ioms as being in backwards
canonical form. The reason for this name is that such rules correspond

directly to definitions of Dijkstra’s 147] predicate transformer wlp
(the “weakest liberal precondition” operator). bre precisely, from the
rule A— >Q {ASSLJM E A}Q on can infe r that (A— > Q)— >w lp( ASSIR ’IE A , Q).  In

this simple case it also makes sense to take A— >Q as the definition of
wlp(ASSUME A, Q) ,  not just as an upper bound for it. Thus ,

wlp(ASSUM E A, Q) = [A->Q ]

may be used as a definition for the seman t ics of the ASSUIE statement in
Dijk stra ’s terms. It is easily verified that all of Dijkstra ’s ‘axioms’
fo r wlp are satisfied here. In other cases the identity between
wlp(S,Q) arid the precondition of a bare ax iom in backwards canonical

form does not follow; one can only assert the weaker implication, pre—

>wlp(S,Q).

Cbserve al so that an axiom that is not in this canonical form ,

e.g., the axiom:

Q{ASSLIIE A}Q&A

can somet imes be transformed into an equ ivalen t one in canonical form.
In the example cited, since Q is a free predicate var iable, we may

replace it by A—>Q’ , yielding the ax iom :

A->Q’{ASStJ ’IE AIH A- ) Q ’ )&A

which is equivalent to A—>Q’{ASSUIE A)Q’&A since (A— >Q’)&A = Q’&A is a

tautology. This version also implies

( A— >Q ’)IASStI ’IE A) Q ’
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by the Consequence Rule (since Q’&A—>Q’). But , thi s ax iom differs from
the or ig inal (canonical ) ASS(.rIE axiom only in the name of the free
variable Q. Conversely, the canonical form implies the noncanonical
version by replacing Q’ by Q&A , noting that Q—>(A-- >Q&A) , arid using the
Consequence Rule .

We now present, wi thout fur ther discuss ion , the I-bare— type ax ioms

arid rules defining the semant ics of the language SL.

3.1 ASSERT Ax iom
A{ASSERT A}A

Alternative equivalent form of Ax iom 3.1:

3.la : P—>A& A— >Q
PIASSERT A}Q

3.2 ASSUIE Axiom

A->Q{ASSUME A}Q

Alternativ e equivalent form of Axiom 3.2:

3.2a : Q{ASS(14E A}Q&A

Note : Axiom 3.2 can al so be used as an axiom for assertions that
are subject to run— t ime checking ( i .e . ,  so cal led “checked assertions”;

see e.g., the ax iomatization for EtXIID in London , et al.,  [ 4 ) ) .

3.3 PROVE Ax iom
Q&A{PROVE A }Q&A

Alternative equivalent forms of Axiom 3.3:

3.3a : Q&A {PROVE A)Q

3.3b: Q—>A
~TP~OVE A1}Q

Notes: 1. Axiom 3.3 is given by London, et al. [4)  as an axiom for
unchecked assertions in EtrLID.

2. The difference between ASSERT arid PROVE is seen to be that
ASSERT serves as a complete break between \~ s, whereas PROVE
does not create a new SIC , but merely forces verification of
its pred icate while conjoining this predicate to any other
precond itions for use in prov ing the next ASSERT/PROVE to be
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encountered . ASStIIE plays a role similar to this last aspect
of PROVE , but , of course , does riot demand proof for its predi-
cate . Sane authors have used ASSERT in the sense which we use
PROVE here.

3.4 Assigrinent AXICtI

Q(e/ x) {x:= e }Q

Note 1. The notation ‘Q(e/x)’ stands for the result of replacing
each (free) occurrence of x in Q by a (free) instance of the expression
e. If this substitution results in the capture of free variables in e
by quantifiers occurring in Q, the quantified variables must be

systematically renamed (by fresh variables) before carrying out the
indicated substitution.

Note 2. This ax iom assumes that evalua t ion of the expression e
produces no side effects.

3.5 BEI~IN. . .END Block Rule
PtBEXIIN stats END}Q
P[stats)Q

3.6 Conditional Rule

P&B{stat l)Q, P& B f s ta t2)Q
P [IF B TH EN statl ELSE stat2 ENDIF}Q

3.7 WH ILE Rule

I&B { stat) I
I (WH ILE (ASSERTING I) B [0 stat ENCWHILE } I& ~B

Alternative equivalent form for Rule 3.7

3.7a: P— >I , I&B {sta t }I , I& B—>Q
PIWH ILE (ASSERTING I) B IX) stat ENI~~HIIEJ Q

3.8 GO’IO Axiom
A (GO’lD Lab ( ASSERTING A) }Q

Alternative equivalent form for Ax iom 3.8

3.8a : P— >A

~T~ö’iO Lab ( ASSERTING A)}Q
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Note : (Xir form of QIY1D, assumes that the assertion A occurring at
the targeted label appears expl icitly within the “asserting” cla use of
the goto statement. This assumption requires that every label in the
pr ogr am be followed by an ASSERT statement, arid that ( i f  necessary) a
preprocessor place these assertions redundantly within the corresponding
goto statements.

3.9 LABEL Axiom

Since the label’s role is taken over by the above OJID convention ,
labels become no-ops to the verification condition generator. Hence ,
the semantics of the label\stat (to the ~ICG) are given by:

Q{LABEL Lab}Q

3. 10 E~npty Statement Ax ioms

Q{SKIP)Q

3.11 ABC~T Axiom
P{A~~RT} fal se

D. Specifications of a ~ICG for SL—Consistency with the Ax ioms.

~~~ebraic Specifications

In this subsection we present , again without much discussion , a set
of algebraic specifications for a verification condition generator (VCG)
tha t are rigorously based on the bare—type ax ioms listed above . The
specifications we present here are based on a set due to D. Musse r of
the t~~C Information Sciences Institute (pr ivate carinunication) . We have
added the WHILE specification (57) and the ABC~T specification (Sil) to
Musser ’s set. In several other cases ( notably for the IF statement
specification S6) , we have also experimented with alternative fo rm s , but
we decided to stick with Mus ser ’s versions , even though they entail some
duplication of ~ICs.

These specifications form a set of 12 rewrite rules specifying a
function WG (which is supposed to compute a list of verification
conditions consistent with the above bare rules) whenever ‘ICC is
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supplied with t~~ arg unents ——(l )  a list of abstrac t statement forms
representing a segment of SL source code , and (2)  an arbi t rary
postcorx]ition pred icate , Post . Thus , \X G has the functional ity:

WG: StatList x Prod —> PredList

where StatList is the set of all legal pr ogram segments, Prod is
the set of all (abstract form) predicate expressions , arid Pr edList is
the set of all f ini te  ( length n=1, 2 , . . .)  lists of predicates from Prod .
Post is an arbitrary member of Prod , arid StL is an arbi trary member of
StatLi st. StatList includes the empty program , denoted by NIL. We use

angle brackets to represent l ists , and the infix operator @ to denote
“ append” on lists.

We specify:

SO: ~ICG(NIL, Post) = <Post>

Sl: VCG(StL; ASSERT A, Post) = VCG(StL , A) ~ <A—>P ost>

S2: \~ G(Stt. ; ASSUIE A , Post) = VCG(StL , A—>Po st)

53: \~ G(5tL; PROVE A, Post) = VCG(StL , A) @ VCG(StL , A—>Post)

S4: VCG(StL; x:e , Post) = <Post(e/x)>

S5: ‘ICG(StL1; BEGIN StL2 END, Post) = VCG(3LL1 @ StL2 , Post)

S6: ‘ICC(StL; IF B TH EN statl ELSE stat2 ENDIF , Post) =

VCG(StL; ASSTJIE B; stati)

@ VCG(StL; ASStY4E (NOT B ) ;  stat2 , Post)

S7: WG(StL; WHILE ( ASSERTING I) B CO stat ENI3~JHILE, Post) =

VCG(StL , I)

~ VCG(ASSVME I; ASS~~1E B; stat , I)

@ <I& B—>Post>

S8: ‘ICG(StL; CD’IO Lab ( ASSERTING A ) ,  ROST) = VCG(StL , A)

S9: ~ICG(StL ; , Post) = VCG(StL , Post)
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SlO: ‘ICG(StL; SKIP, Post) VCG(STL, Post)

Sil: ‘ICG(StL; ABa~T, Post) = VCG(StL, true)

In the nex t p ar t  of this Subsection we present detailed proofs that
the specifications SO—Sll for \~tG are consistent with the I-bare axioms
arid rules appearing in Subsection C.

Manual Consistency Proofs

We show here , by manual proofs , that the algebraic specifications
SO—Sll given above for the function \ICG are consistent with ( i .e . ,  imply
the val id ity of) the bare—type ax iornatization (also given above) of the
simple prog r amming language. Each proof consists of applying a
p ar t i cu la r  ~ICG specification ( say , the one for “stat”) to the statement
list ASStJIE P; stat arid an arbitrary postcondition Q. We then expand
this application according to the specification, applying various

reductions, arid we interpret the final result, \ICG(ASS~J1E P; stat, 0) =

L, by means of the following:

Correspondence Rule :

If SICG(ASSUME P; stat, Q) = <P1 ,... ,Pri> then the Hoare—type rule:
Pl ,P2 ,... ,Pn
P(sta t)Q

is satisfied.

The Correspondence Rule serves to establish the connection between
the bare forma1 i~ n and the ‘ICC function , in that the elements of the

list L obta ined by expanding the appl ication \~ G(ASSTJME P; stat , Q) are
to be interpreted as suffic ient conditions P1, P2 , . . . ,  Pn to infe r that
Ptstat}Q. In some cases these subsid iary deductions may themselves be
relations of the form, \CG(statements, post) = L , arid consequently they

also need to be interpreted as bare statements, pre (statements}post.

Usually, however , the Pi will simply be statements in the base logic.

It should be noted that the proofs also make use of the four
fundamental rules of the bare forma1 i~n given earlier. Their use in
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proving the 1~~ ~~uage—dependent rules is leg itimate since they are basic
to the I-bare ~forma1 i~ n and are independent of any particular language.

1. ASS~11E Statemen t

VCG ( ASSUME P; ASStYIE A , 0) = VCG(ASSUM E P, A— >Q)

= <P —> (A— >Q)>

Hence , by the Correspondence Rule ,

P-> (A->Q)
• PIASSUME A)Q

Spec ial ization of P to A— >Q yields:
A->Q(ASSUM E A 1}Q

2. ASSERT Statement
VCG ( ASStJ4E P; ASSERT A , 0) = VCG(ASSUME P, A) @ <A—>Q>

= <P—>A) @ <A— >Q>

= <P—>A , A—>Q >

Hence, by the Correspondence Rule ,

P->A ,A-->Q
P[ASSERT A}Q

Special ization of both P and 0 to A yields:

A {ASSERT MA

3. PROVE Stat ement
VCG ( ASSUM E P; PROVE A , 0) = VCG(J\SSUME P , A)

@ VCG(ASSTJME P , A->Q)

= <P—> A > ~ <P — >  ( A—>Q )>

= <P—> A , P& A— >Q>
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By the Correspondence Rule we obtain:

P—>A , P&A—)Q
PJPROVE A}Q

• Letting P = Q&A , we f ind :

Q&A{PROVE A}Q

A familiar alternative form (equivalent to the I-bare—type ax iom

j ust der ived) is obtained by replacing 0 by Q&A:

Q&A {PROVE A }Q&A

This alternative form also clearly implies the f i rs t  form , by the

Consequence Rule ; hence , the two forms are equivalent .

4. Assignment Axiom
VCG(ASSUME P; x := e , Q) = VCG ( ASSUME P, Q(e/x) )

= <P —> Q(e/x) >

By the Correspondence Rule,

P—>Q(e/x)
P {x : =e

Letting P=Q (e/x) yields:

Q(e/x) {x: e}Q

5. Block Rule

VCG(ASSUME P; StL1; BEGIN StL2 END , 0)

= VCG(ASSUIE P; StL1; StL2, 0)

from which the Correspondence Rule directly yields:

p {StLl; StL2 }Q
P {StL1; BEGIN StL2 ENDIO

6. Coed it ional Rule

VCG ( ASSUME P; IF B THEN Sl ELSE S2 ENDIF, 0)

VCG ( ASStJME P; ASS~i4E B; Si , Q)
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@ VCG(ASSUME P; ASSIIIE B; S2, 0)

from which direct applications of the Correspondence Rule yield:

P(ASSIt .IE B; S1}Q, P{ASSIJME B; S2)Q
P [IF B THEN Si ELSE S2 ENDWTQ

However , the relation P {ASSUME B; S1}Q is implied by P&B{S1}Q, and

similarly P {ASSUME 8; S2}Q is impl ied by P& B {S2}Q. [These

implications follow from the Rule of Concatenation arid the ASSr.XIE

Axiom ) . Hence, fran the above rule we al so obtain:

P&B {Sl}Q, P& B {S2 }Q
P{IF B THEN Si ELSE S2 ENDIF)Q

which is the desired Hoare Rule for conditional statements.

7. WHILE Statement

VCG(ASSUM E P; WHILE (ASSERT ING I) B IX) S ENI3~JHILE, 0)

= VCG(ASStJME P, I) @ VCG(ASSLJ4E I&B; 5, I) @ <I& B—> Q >

<P—>I> @ VCG ( ASSUME i&B ; 5, I) @ (I& B—>Q>

rising the Cor respondence Rule we find that:

P—>I ,I&B(S)I,I& B—>Q
PI WB ILE ( ASSERTING I) B CO S EN1)~JH IIE}Q

By letting Q be I&B we obtain:

P—>I , I&B [S)I
P [WHILE (ASSERTING I) B CO S ENIYNHILE }I& B

Additional simpl i f ica t ion is obtained by letting P=I, so tha t:

I&B{S)I
I~WHILE (ASSERTING I) B [0 S ENI3,~HILE }I& B

which is the usual I-bare rule for while. .  .do statements (and also our

WHILE Rule 3.7) .

8. (XYIO Ax iom

VCG(ASSUME P; GO’IC L (ASSERTING A ) ,  Q)

= VCG(PiS SUME P, A) =
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Hence , by the Correspondence Rule :

P->A

~T~ö’io L (ASSERTING A) 10
This can be simplified to the (equivalent) form:

A{GO’lO L ( ASSERTING A) }Q

9. No—Op Axiom

If we let SKI P stand for any of the no-op statements of the

lang uage ,
\~G(ASSUNE P; SKIP, Q) = VCG ( ASSUME P , Q)

Hence , by the Correspondence Rule:

p- >Q

~T~~i P }0

The simplest form is obtained by let t ing ~~~~ so tha t we get the axiom:

Q{SKI PIQ

10. ABORT Axiom

VCG (ASSUM E P; ABORT, Q) = VCG (ASSUME P, true)

= <P—>true > = <true >

Hence, by the Correspondence Rule:

P(ABORT}Q

hold s for any predicates P and Q. In particular , we hav e the standard
form of the ABORT axiom:

P{ARJRTI false

where Q false , arid fran which P{ABORT}Q follows from the Consequence
Rule , since false— >Q .

This concludes the proofs of consistency between the ax iomatization
arid the algebraic specifications for WG.
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E. Verification of the Implementation in Terms of the Specifications

?~ present here the second portion of the consistency proof for
S.CG. This portion of the proof verifies that the LISP implementation
(or, more precisely, a paraphrase of that implementation in the theorem

prover ’s syntax) is consistent with the algebraic specifications
discussed above. The proof is carried out entirely on the Boyer —Moore
theorem prover [48] for recursive f unct ions . The theorems to be proved
are (paraphrases of) the algebraic specification equa t ions . There is a
separate proof for each algebraic specification equation. ~ ice having

been init iated (by calling the theorem prover function PROVE on a
theorem) , the proof of each theorem proceeds automatically. However,

there is a substantial amount of information that must be suppl ied to
the theorem prover pr ior to that point. In this subsection we show and
di scuss this initial “ setup” process. The detailed proof traces of the

• individ ual automatic proofs are collected in Append ix A , along with the
ver i f ied  LISP code and the corresponding definitions supplied to the
pr over .

1. L~~fini t ions Supplied to the Theorem Prover

To be able to prove a theorem containing references to func tion
symbols (or pred icate symbols) the theorem prover must prev iously hav e
been suppl ied with (recursive function) definitions for those symbols.
The theorem prover canes already supplied with definit ions for most
list—pr ocessing pr imitives (such as CONS, CAR , CDR , APPEND , REVERSE , and
EQUAL) as well as with the arithnetic primitives (PL~~, TIMES ,

DIFFEREI ’CE , QWTIE~r , arid EXP’r). The latter , however , are not needed
fo r the proofs in question.

Sane of the defini t ions we needed to supply are simply

(nonrecursive) abbrev iations , e .g. ,  it is convenient to use the LISP

primitive LIST (which happens not to be incorporated into the prover
ini t ia l ly)  as LIST( x) <— ( CONS x “NIL”) . [The reason why LIST was not
built in is, apparently, because LISP ‘LIST” is usually defined for ~~
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n~.unber of arg unents , arid the theorem prover insists on a defir~ite f i xed
number . Since one argument suffices for our pur poses, this is what we
have done.] Note also that the LISP atom NIL appears as the str ing
constant “ NIL” in the prover ’s synt ax ; it is identical to the value
returned by the zero—argument function (NIHIL) . Many of the definitions
for the syn tax of the language SL are al so nonrecursive. For example ,
an assignment statement is defined by the pr ed icate ASSTP as defined for
the prover by the command :

DEFN(ASSTP (S) ( AND ( EQUAL (CAR 5) “ :&‘) (PLISTP (CDR S ) ) ) )

The prover predicate PLISTP is true for proper lists , i.e., those
ending in “NIL” , and for “ NIL” itself. Thus , (ASSTP S) will be true
precisely for proper lists whose car is the assig rtnent key word “ :=“ of
SL.

Sim ilar definit ions suffice for the other types of legal statements
of SL. For example , it is useful to lump together all the no-op
statements of SL into a single predicate NtJLLP defined by:

DEFN (NULLP (S) (IF (LISTP S)
(OR (EQUAL (CAR S) “SKIP ”)

(EQUAL (CAR S) “LABEL”))
(EQUAL S “ NIL ” ) ) )

These defini t ions arid the othe r syntax pred icates hav e been
combined into a single predicate LEGALSTATP such that ( LEGALSTATP S) is
true if and onl y if S is a legal statement of the language SL. Because
the compound statements , e.g., the IF statement , contain statement
components, LEGALSThTP is a recursiv e function. A separate predicate
LECALP is used to define the notion of a legal pr ogram (i .e., “NIL” or a
l i st of legal statements) . Thus , LEGALP is al so r ecur sive arid calls
LEGALSTATP.

Recursive defini t ions pose a spec ial problem for the present
version of the Boyer—M oore theorem prover in that one must be able to
conv ince the prover that such defini t ions are well— fo und ed , i.e., that
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the recursive function in question is total . The prover knows about
such functions as the LISP function COUNT, and is generally able to
ded uce well-fo undedness where the recursive calls take place on CDR’d
arg uments. ~~en the system is unable to deduce well found edness it
emits a FAILED message after an attempted DEFN definit ion , but
tentatively accepts the de f in i t ion an~~ay, with a caveat to the user
that the deductions may be unsound as a result. Inc identally,  the DEFN

mechani~ n absolutely precludes giv ing any mutuall y recursive
defi nitions. Thus , it would have been impossible to define LEGA LSTATP

in term s of LEGALP , while also def ining LEGALP in terms of LEGALSTATP.
Since the latter definit ion is essential , we had to forego defining
LECALSTATP (fo r BEGIN blocks) by a recursive call to ( LEGALP (CtR
block) )

The main def ini t ions supplied to the prover concern the ~.& G
implementation itself (the syntax predicates discussed above are rathe r
subs idiary, but they are convenient to use in the ~ CG functions) . The

~XG is implemented entirely in pure LISP (no SE’I0~’s or PR(Xs are used).
The top-level function ~~S accepts two arguments ( the f i r s t  must be a

legal statement l ist arid the second a logical formula) and returns as
its val ue a l ist of log ical formulas purp ort ing to be the verif icat ion
conditions (VCs) for that statement l ist and postcoridition. ‘vCG is
essentially a bac kward—acting verif ication condition generato r , i .e. ,  it
“ pushes back” the second argument past the last statement in the
statement list to determine the weakest precondition holding at the

point just  ahead of this last statement. \CG then proceeds by call ing
itself recursivel y on the rest of the statement list with this modified
çostcondition. Since list—processing recursion is more eff icient ly
handled by recursing down a list by CARs and CDRs , the actual
impl ementat ion defines ~tS(L , Q) in term s of a function \~ R which ac ts
on the reversed list  RL = (REVERS E L) .  Thus ,

‘~X S ( L ,Q) <— (VC R (REVE RSE L) Q)

where ‘.~ R ( R L , Q) is defined by the usual CAP/CE*~ recursion , with a
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separate kind of action depend ing on the syntactic type of the statement
(CAR RL) . Thus , for example , if (CAR PL) [ remember : this is the last
statement in L] is a no-op statement such as “NIL” , (SKIP) , or (CCt1ME~T~
t e x t . . . ) ,  then VE R(RL , Q) simply returns (VCR (CDR RL) Q ) .  That is , the
no-op statement is ignored by the \CG. The reader is referred to
Appendix A for the details of this arid othe r definitions .

It would be best , however , to comment here on the syntactic
di f f erences between the act ual LISP code implementing the \~ G arid the
correspond ing definitions made to the prover . The key words of the
lang uage SL , such as IF , BEGIN , := , and WHILE appear in the
implementation as quoted atoms. Their counterparts in the prover
syntax , however , are r equired to be quoted character str ings (e.g.,
“IF” , “BEGIN” , and so forth) . The actual LISP function LIST (of an
arbi t rary  number of arguments) cannot be used in the prover (as al ready
mentioned above) , so that it is necessary to expand out , e.g . , (LIST a b
C) to ( CONS a ( CONS b ( CONS c “ NIL” ) ) ) .  Beca use LIST has been defined
for the single—argument case , this can (but need not) be shortened to
(CONS a ( CONS b (LIST c ) ) ) .

C~currences of the pr over function PLISTP have been introduced in
var ious places in the prover definitions (where nothing corresponding to
thi s appeared in the LISP code) . These introduct ions proved necessary
to allow the prover to attempt reasonable inductive proofs (by induct ing
on the list structure of those arg uments forced to satisfy PLISTP) .

The statements ( theorems) to be proved by the Boyer—Moore system

al so require transcription before input to the system. In fact,  the
syn tactic differences are greate r for these theorems than they are
between LISP code arid prover tEFN fo rms. Consider , for example , the
specification for ‘~~S when appl ied to a (legal) statement list ending in
an ASSERT statement. ~4~en writ ten in conventional ( concrete) fo rm this
specification appears as: -

VES(STL; ASSERT A , Q) = VCS (STL , A) @ <A —> Q>
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This form is certainly highly read able . ~~ could hav e insisted
(wi th some loss in readability) on wr i t ing this specification in a LISP—
like prefix form such as:

( EQUAL (VCS (APPEND STL ‘( ( ASSERT A ) ) )  Q)

( APPEND (VCS STL A) ‘((IMPL IES A Q ) ) )

where the prefix funct ion symbols EQUAL, APPEND , and IMPLIES repl ace the
respective infix forms =, @ , and —> , arid the metalanguaqe angle brackets
< >, denoting an expl icit l ist , are replaced by LISP parentheses.
However , even this mild paraphrase does some violence to the real
issues, for wri t ing ‘( (ASSE RT A))  makes A a quoted atom ( instead of a
fr ee var iable denoting a logical formula) . Even worse , Q is treated as
a quoted atom in one place arid as a variable (to be evalua ted) in
another . In order for the Boyer—Moore system to handle this theorem
properly we need to take into account the fact that A arid Q are not
quoted atoms (indeed, the prover prov ides for no such data type ; it

would have to be a str ing—quoted expression , v iz . ,  “A ”) . A l i t t le
thought shows that what is needed is:

( EQUAL (VCS ( APPEND STL

(CONS ( CONS “ASSERT” (COt’S A “NIL”))  “NIL” ))

0)

( APPEND (VCS STL A)

(CONS (CONS “IMPLIES” ( CONS A ( CONS Q “NIL” ) ) )

“NIL” ) ) )

This could have been abbrev iated somewhat by makin g use of the
single-argument function LIST:

( EQUAL (VCS (APPEND STL (LIST ( CONS “ ASSERT” (LIST A ) ) ) )

0)
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( APPEND (VCS STL Q)

(LIST (CONS “IMPLIES ” (CONS A (LIST Q ) ) ) ) ) )

Eithe r of the two preced ing versions could have been suppl ied to
the theorem prover as theorems to be proved , arid the proof would have
succeed ed . In fact , we took the pr ecaution of add ing as an additional
hypothesis the fact ( LEGALP STL) which is impl icit in the orig inal
fo rmulation. After all , if STL is not a legal list of SL statements, we
do not care what ‘~~S would compute. In practice , however , the
definitions suppl ied to the theorem prover must prov ide a default  in the
event of illegal inputs. We choose this to be the (str ing) constant
“UNDEFINED” , as can be seen from the defini t ion of \X R. In a pr actical
form of the implementation we would probably guard against i l legal
inputs of this sort by prov id ing syntactic tests with error invocation

upon fa i lu re . [In fact , exactly this device was used in another version
of this \X.G. It has been seen (along with other similar tests) to be a
useful debugg ing fea ture) ] .  In a finished system , i.e , one comprising a
front end pa rse r , such syn tactic checks are carried out by the parser ,
arid can therefore be el im inated from the \~ G.

As al ready mentioned , the detailed proof traces resulting from the
action of the Boyer—Mo ore system on the (transcribed ) algebraic
specifications are shown in Appendix A. The reader is encouraged to

examine these traces carefully,  noting,  in par t icular, that the fai r ly
vol uminous explanatory output shown there is~ automatically generated by
the system to help the reader follow the line of reasoning established
by the prover . We have not added any parenthet ic remarks or caiunents
between any invocation of PROVE arid the final  PROVED wh ich terminates a
successful cal l to the prover .

U~fortunately,  it has not been possible to get the prover to ver i fy
consistency between the impl ementation arid the IF ax iom . We bel ieve
that this is due to a qu irk in the prover rathe r than to any basic flaw
in either the way the theorem has been set up or in the DEFNs prov ided
to the prover . Part of the problem is the propensity of the prover to
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exhaustively consider all possible statement types for the statements
Sl , S2 , appearing in an IF statement , “IF B THEN Si ELSE S2” . Since Sl
and S2 can themselves be IF statements, a rather sophisticated induction
is called for——one which the prover seems to be unable to prov ide
automatically. Anothe r problem noted in attempting this proof is that
the prover attempts to induct on the list s t ructure  of the Boolean test
B of the IF statement——an induction that is doomed to fa i lu re .  In our
opinion the proof should be capable of success without recourse to

either sort of induction. We are still working on this problem and hope

to overcome it by proving some pr ior lemmas by means of the prover
function PROVE.LEM 1~iA. This function is l ike PROVE but also stores awa y
the resulting theorem as a rewrite rule or as an induction lemma for
f uture use . In this way the user of the system can exercise some
control over the deduction strategy taken by the prover .

F. Some Cbservat ions

Admitted ly, the lang uage SL for which we hav e designed arid ver i f ied
a verification condition generato r is an extremely simple one . Even
though it includes structured conditional arid iteration statements, as
well as gotos arid an abort statement , many aspects of modern hig h— level
languages were not covered, such as name scoping ,  procedure arid function
calls (wi th or without side effects) , modules , case statements, jumps

out of blocks , exception handling, or parallelisn . It remains to be
seen whether similar means will suffice to provide correspondingly

convincing proofs of correctness for a more real istic \~G. However, the

sta tement types of SL are v i r tual ly  certain to be part of any reasonable
bl ock—structured language. ~~e suspects that proofs of the \~tG fea tu r es
for these statements would not be radically altered by v i r tu e  of
interactions with othe r constructs ( except for side effects) . ~t i 1i ,

just writing a \~ G for one of the more realistic languages is an

ambitious undertaking, let alone carrying out a formal proof of its

correctness. Nevertheless, we hope that we, or others, will be inspired

to undertake such an exercise in the near future.
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One case in point is a S.~ G that  was designed and implemented by us-
fo r a subset of JOVI A L—J 3 (JCX IT version) under contract with  I~xne Air
Developnent Center [20]. We were reasonably confident at the time of

it c  completion that this ii~p1ementation was substantially correct for
the subset it was supposed to handle.  Subsequent analysis by the same
techniques used above (hand methods only—no machine proofs) revealed
that there were , in fact , several bugs. These were not revealed in the
course of routine testing , simply because none of the test progr ams
contained features that would exercise the faulty code . Al thoug h the
bugs were not serious ones, arid were easily repaired, it is still
disturbing to us that they could occur. This confirms our feel ing that
there is no substitute for some level of formality both in the
description of program semantics and in the carrying out of correc tness
arg uments for a ‘KG, if that ~XG is to be considered reliable.

Under our current contrac t with !~ ne Air Developnent Center we are
buildi ng a much more ambitious program verifier , this one for JOVI AL—
J73/I. The statement types of SL were chosen partly because they are a
core subset of J73/I that would need handling in any case. As our

effor t  progresses with J73/I , we propose to subject the desig n of its
verif icat ion condition generato r to the scrutiny used above for SL , even
though the level of formal ity may be necessarily somewhat less severe.



IV IN DU CT I VE PROOF OF SET PROPERTIES

This section is concerned with the app lication of inductive tech-

niques to the verification of programs involving set constructs. The

usefulness of set—theoretic structures in the specification of algorithm s

is clear; the power and richness of expression that set—theory provides is

affirmed by its standing as the forma l basis of almost all of mathematics.

Unfortunatel y, set—theoretic constructs do not directl y lend themselves to

recursive formulation , and hence , to inductive proof. (Indeed , the princi-

ple of induction is not even stated as an axiom of set—theory, though a

version of it can be derived.) The essential difficulty lies in the depen—-

dence of inductive methods on the existence of a well—founded partial

ordering over some aspect of the structure to which they are to he applied .

Arbitrary sets , of course , do not impose an order upon their constituent

elements; more to the point , the order in which elements are added in the

construction of a set is not reflected in the end product.

Nevertheless , it is possible to formulate properties of sets in a r~~—

cursive fashion , at least in the finite case. The basic idea is to map oh-h

finite set to some permutation (represented as a List) of its members. For

each set operator or predicate , one finds a corresponding list operator

or predic;7to th at homomorph ic-ally preserves the value or truth of its

c o r r e s p o n d e n t, m o d u l o  r e p r e s e n t a t i o n .  The list ope ra to r s  and p red ica tes

are defined in a recursive manner.

Suppose , for examp le , one wishes to prove that A B B A for

arh itrnrv finit e sets A and B. We define the recursive function l’NION for

lists by:

i ~~~~ ~~-~- r u1L~-.~D 
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UN IO N (X Y) =

(IF (NL I STP X)

Y

( I F  (MEMBER (CAR x) Y)

( UN I O N  (CDR X) Y)

(CON S (CAR X) (UNION (CDR X) Y ) ) ) )

where IF is the conventional 3—p laced conditional.

S i m i l a r l y ,  the p r e d i c a t e  SETEQUAL is defined by:

SETEQIT A L(X Y) (AND (SUBSETP X Y) (SUBSETP Y X ) ) ,

where SU BSETP(X Y)

( IF  (NLISTP X)

T

(AND

(MEMB ER (CAR X ) Y)

(SUBSETP (CDR X ) Y ) ) )

The theorem to be proved thus becomes:

(SET EQUAL ( U N I O N  A B) (UNION B A ) )

By v i r t u e  of i t s  recurs ive  f o r m u l a t i o n , th i s  last formula  is easy to

prove by i n d u c t i o n . I t s  v a l i d i t y ,  moreover , necessar i ly imp lies that of

the  orig ina l  t heo rem.  To see tha t th i s  is t rue , le t  us suppose the ex-

istence of two finite sets X and Y that violate the original theorem , i.e .,

such tha t X ~ Y ~ Y ~ X. L e t t i n g  X and Y denote , respe ctive ly , two

arbitrary list representations of X and Y , we have , by the homonorp hic

propert y of UNION (which we have posited , but  not  p roved)  t h a t  X U N I O N  Y

must be i list representation of X 1, and that Y UNION X must be a

l i s t  r ep r e se n t a t i o n  of Y X. Then using the homomorphic propert y of
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SETEOU AL , it follows from X Y # Y X tha t  (SETEQUAL ( U N I O N  X 2) ( U N I O N

? X ) )  is f a l s e , giving a con t r ad i c t i on .

This i l l u s t r a t ion , is of course , much too simple to give a v a l i d

ind i cat i on  of the  usefulness  of the technique. The examp le on which  we

focused our study is f a r  more d i f f i c u l t .  I t  is taken from a r a t h e r  e l a b o r a t e

a l g o r i t h m  (due  to Pease , Shos tak , and Lamport) for obtaining synchroni-

zation among a group of mutually—suspicious processors , some of which maY

be faulty, in a distributed computing system . The paper in which the

algorithm is described is attached as Appendix B. We will assume for the

remainder of this chapter that the reader has at least scanned that material.

Our e f f o r t  was l a r g e l y  conce rned  w i t h  u s ing  the  Bover—Noore t l ico r cr - ;—

prover  t o  o b t a i n  an a u t o m a t i c  proof of one aspect of the correctness of the

ahor ithrn . While t h e re  was not  s u f f i c i e n t  t ime in t h e  course of th e Droject

to comp lete the proof , the main lemma required for the ~- t- rifi ~~ttion was

su c c e s s f u l l y  demons t r a t ed . A listing of the definitions and the chain of

lemmas l ead ing  to the main  lemma is supplied in Appendix C.

The most  difficult aspec t  of carrying out the e x a r p l e  wi s  not  the proof

i t s e l f , bu t  r a t h e r  the  recurs ive  f o r m u l a t i o n  of the  i l g o r i t h m ind t h e  s t a t e —

ient of its correctness.

The most natural formulation of the algorithm (described on p. p—~ ~~

Appendix B ) requires two mutuall y—r ecursive functions : one t o  c o m p u t e  a

sinUi (— elem ent of an interactive consistency vector , and the ot~ cr to compute

an e n t i r e  v ect o r .  Because the Bover—Moore system does not illo w introduc—

t ion of m u t u a l l y — r e c u r s i v e  f u n c t i o n s , i t  was n e c e s s i r v  to (onhine t he  two

into a singly—recursive function , TC.VECTOR (defined on p .  (—5 of Appendix C . )

Note that IC.VECTOR takes 7 a rgumen t s :  P , PROCS , PROCSC D RS , N , N , SU F F I X ,

LIARS . The function r et u r n s  the in t e r a c t i v e  c o n s i s t en c y  vector (represented

as an ASSOC — tist) that processor P would compute given that the subset LIARS

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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of PROCS consists of faulty—processors. The quantities N and M are as in the

statement of the algorithm in the paper. The arguments PROCSCDRS and SUFFIX

are artificial , and come into play only on internal recursive calls. In the

in i t ia l  call , PROCSCDRS is bound to PROCS , and SUFFIX to N i l . .

The proved property is that the elements of the interactive consistency

vector corresponding to non—faulty processors give the private values (as

def ined by the uninterpreted function PV) of those processors. The crux of

this property is the lemma STRONG .TEST.SETS.N , given on p. C—13 of

Appendix C. It should be noted that this lemma is the culmination of a

long string of lemmas. The proof required about 100 hours  of human inter-

action and about several hours of CPU time .

52

_ _ _ _ _  -. - -  - -  ~~~~~~~~~~~~
-- -  j ---- - 

-

~~~~ -



REF ERE~~ES

1. R. W. Floy3 , “Assig ning Meanings to Programs,” in Mathematical
Asp~cts of Computer Science, Vol. 19, J.T.Schwartz (ed.), pp. 19—
32, Pinerican Mathematics Society, Providence, Fthode Island (1967) .

2. C.A.R. I-ioare, “Ni Ax iomatic Basis for C~ nputer Programming ,” CACM,
Vol. 12, No . 10, pp. 576—5 83 (Octobe r 1969) .

3. B. Elspa s, “The Semiautomatic Generation of Ind uctive Assertions
for Pr oving Program Correctness ,” Interim Report, SRI Project 2686,

- 
SRI International , Menlo Park , California (November 1977).

4. R. London , et al. ,  “Proo f Rules for the Programming Language
EIX LID,” Pcta Info rmat ica (to app ear)

5. R. J. Feiertag, P. M. Melliar—Smith , and J. M. Spitzen , “The Yellow
Programming Language ——Prel iminary Design Phase Report arid Language
Specification ,” SRI International , Menlo Park , Calif ornia ( February
1978)

6. L. Robinson , “ HDM— Cani~and and Staff Overview ,” ~~chn ica1 RepDrt
CSI1-49, SRI International , Menlo Park , Cal ifornia (February 1978).

7. P. G. Neumann , et al., “A Provably Secure (~erating System: The
System , Its Appl ications , arid Proofs ,” Final Rep ort , SRI Pr oject
4332, SRI International , Menlo Park , California (February 11 ,
1978)

8. 3. H. Wensley, et al., “De sig n Sttr3y of Softwa re-Implemented Fault—
Thierance (SIFT) Computer , ” Interim T~chnical Re p or t  1, SRI Project
4026 , SRI International , Menlo Park , California (June 1978).

9. 5. L. Hantler  and 3. C. K i n g ,  “An Introd uction to Proving the
Cor rec tness of Pr ograms ,” Computing Surveys of the ACM , Vol . 8,
No. 3, pp. 331—353 (Septenter 1976).

10. W . C. Carter , W .H. Joyner , and C. Brand , “Microprogram Verifi—
fication Considered Necessary,” Research Report 1~ 7053, IBM
Thomas 3. Watson Research Center , York town He ights , N.Y. (December
13 , 1977) .

11. S. Saib , et al., “k3vanced Software ~iality Assurance,” Final
Report CR—3—770, General Research Corporation, Santa Barbara ,
California (May 1978).

53 

— - --—--- ~~~~~~~~~~~~~~~ ~i~i~Ti -~~



12. 3. C. King, “it Pr og ram Ver i f i er ,” Ph.D. thct is , Carnogie—Mellon
Un ivers i ty ,  Pi t t sburgh , Penn sy lv~ n i~ (~ c.c~errL .er ) Cj~ 9)

13. 5’. K atz  ~-t nt~ 7, N~ rna , “ U g l c a i  ‘.n~ lyris of P t oqr am~~,” Ci~C~-’,
Vol. 19 , t~~. 4 , t p .  188—206 (1’p r i l  1976) .

14. S. H . German arid B. ~egbreit , “1- Synthesizer of Inductive
Assertions,” IEEE Tr ans. on Software E~ig ineering ,  Vol .  SE— l , No. 1 ,

F pp. 68—75 (March 1975) .

15. S. K. Basu and J. Hisra, “Proving Loop ProgrEuns,” IEEE Trans. on
Software Dgineering ,  Vol . SE—I , No. 1, pp. 76—86 (March 1975).

16. 3. H .  Morris arid B. Wegbreit , “Subgoal Ind uction ,” C.RCM , Vol . 20 ,
No. 4 , pp. 209—222 ( Apr il 1977) .

17. R. S. Bover , J S. Moore , and R. E. Shos~ ak , ‘Pr imitive Recursive
Program Transformation , ” Proc . 3rd AOl Symposium on Princ ipl es of
Programming Languages, Atlanta , Georgia , pp. 171—174 (January
1976)

18. J. Guttag , “Abstract Data rjpes arid the Deve1opT~ent of Data
Structures ,” CACM , Vol . 20 , No . 6 , pp. 396—404 (June 1977)

19. 8. Elspa s, et a l . ,  “A Ver i f ica t ion  System for JOVI AL/J 3 Progr ams
(Rugged Pr ogramm ing E~iv ironmen t——RPE/1) ,

“ Technical Report 3756—1 ,
Stan ford Research Inst i tute  (January 1976) .

20. B. Elspa s, et a l . ,  “A Ver i f i ca t ion  System for J~~ IT/J 3 Pr ogr ams
( Rugged Programming Env iroritient——RPE/2) ,“ Final Rep or t , SRI Project
5042 , SRI International , Menlo Park , Ca l i fo rn ia  ( Apri l  1977) .

21. 8. Elspa s, “The Semiautomatic Generation of Inductive Assertions
for Proving Program Correctness ,” Interim Report , SRI Projec t 2686 ,
SRI Internat ional , Menlo Park , Cal i forn ia  (Ju ly  1974) .

22. L. C. Ragland , “A Ver i f i ed  Program V e r i f i e r ,” Ph.D. thesis ,
Un ivers i ty  of Texas at Aust in  (1973) .

23. W. W. Bledsoe , “ Program Correctness ,” Mathematics Dep ortment Memo
/‘TP— 14 , The Un ivers ity  of Texas at Au st in  (January 1974).

24. W. W. f3led soe , “The Sup—I nf Method in Presburger Ar i th .met ic , ’
Mathematics Department Memo 1\TP—18 , The University of Texas at
Aus t in  (December 1974) .

25. W. W . Bled soc , “A New Me t hod for Proving Cer ta in  Pr esburger
Formu las ,” Mvance Papers , 4th m t .  Joint Conf . on ?~r t i f i c i a1
In t n l l i gence , pp. 15—21 , Th il i s i , Georgia U. S .S .R.  (September
1975)

54 

-- - - - . - -~~~~~~~~~—-~~~~~~~~~~~~~ --- -



26. w. c~. Bled soe , F. S. Boye r , and ~. H. Henneman, “Computer Proofs of
LImit Theorems,” Artificial Intelli gence, Vol. 3, pp. 27—60 (1972).

27. w. w. Bl ed soe arid p. Bruel l , “A Man—Machine Theorem—Proving
System ,” A r t i f i c i a l  ~~~~~ li ence , Vol . 5, pp. 51—72 (1974) .

28. D. C. Cooper , “Prog r ams for Mechanical Program Ver i f i ca t ion ,” in
Machine In te l lije nce ,  Vol. 6, pp. 43—59, P~ erican Elsevier , New
York (1971 )

29. G. B. Dantzig , Linear Prog r amm ing and Extensions, Pr inceton
Un iversity Press , Princeton , New Jersey (1962).

30. L. P. Eeutsch , “An Interact ive  Program Ver i f ie r ,” Ph. D .  thesis ,
University of California , Berkeley, California (1973).

31. P. E. Goinory, “An Algor i thm for Integer Solutions to Lin ear
Prog r ams,” Pr inceton 1PM Math. Res. Report (November 1958); also in
P. L. Grave-s and p. Wolfe (eds.), Recent Advances in Mathematical
Prog r amming, pp. 269— 302 , McGr aw—Hi l l , New York ( 1963) .

32. P. I . Good , F. L. London, arid W. W . Blcdsoe , “An Interac t ive
Ver i f i ca t ion  System ,” Proc . m t .  Conf . on Reliable Software , Los
Angeles , California (April 1975).

33. 5’. Igarash i , R. L. London, and D. C. lockham , “Automat ic Pr ogram
Ver if ica tion 1: A Log ical Pasis and Its Implementation ,” Stanford
11 Memo 200 (May 1973) and ~~C Information Sciences Institute
R e p or t  rSI/RR—73—ll (May 1973)

34. P. 13. Johnson, “Find ing All the Elementary Circuits of a Cirectct~
Graph ,” SIAM 3. Computing, Vol. 4, pp. 77—84 (1975).

35. P. D. Lc~c~, “ An Appl icat ion of Mathemat ica l  Logic to the Intoger
Linear  Prog r amm ing Problem ,” Notre Dame 3. Formal logic, Vol. x r i r ,
No. 2 ( A p r i l  1 9 7 2 ) .

36. 5. C. L it v j ntchou~ a n ]  V. P. P r a t t , “ A• Proo f Chec ker for  ~~‘namic
Logic,” 5th Int. Joint Conf .  on ~rtif. Intel ]., pp 52—553 , Cam—
br idge , Massachusetts (Auqust 1977).

37. ‘-‘ . Dr ab h~ kr r an~ M . Deo, “Cri Algorithns for Enui~erating All
Cir cui fs of a Graph ,” SIAN 3. Computing , Vol .  5, No. 1 (March
1~ 76)

3~~. V. F . 1’r~~t , ‘
*“ F.’sy Th o: 1 t S  ;‘.~ose Combinat ion  is Hard ,“ M.I.T.

ThLTh n l caI  F~~p e t ,  C mbr idqe , M.~issachusE-tts (September 1977).

~‘). P. C. 1~ a~ ~r~1 1- . E . Tar j an , “Bounds on Backtrac k Al gori tt in s for
Li s~- i ru (~~. 1ea , Pa~~~~, arid Spanning  Trees,” ERL Memo (‘7—433 ,
Elect roni cs  Pr~~ a r ch L. b c r a t o r y ,  U n i v e r s i t y  of Cal i forn ia , Berkeley
( ) Q 7 3 )

55 

— -- --

--—-

-



I

40. P. Shostak , “An E f f i c ient Decision Procedure for Ar i t hm e t ic w i t h
Func t ion Symbols ,” Presented at 5th In t .  Joint Conf. on ! tr t i f .
Intel l .,  Cambr idge , Massachusetts (August 1977) .

41. P. Shostak , ‘Th the Sup—Inf Method for Prov ing Presburger
Formulas ,” J. PC~i, Vol . 24 , No. 4 , pp. 529—543 (Octobe r 1977) .

42. N. Suzuki , “Ver i fy in g  Pr ograms by Algebraic and Log ical Red uction ,”
Proc. Int. Conf. on Reliable Software (Sig plan Notices) , Vol. 10,
No. 6, (June 1975).

43. J. L. Szwarcf i ter  and P. E. La ue r , “F ind in g  the Elementary Cycles
of a Direc ted Graph in C(n+m) Per Cycle ,” No. 60, University of
Newcastle Upn Tyne , Newcastle Upon Tyne , England (Ma y 1974) .

44. P. Tarjan , “Enumeration of the Elementary Circuits of a Directed
Graph ,” SIAM 3. Computing, Vol .  2 , (1973) .

45. P. 3. Waldi nger and K. N. Lovi t t , “Reasoning About Programs,”
J. A r t i f .  In te l l .,  Vol . 5, pp. 235—316 (1974) .

46. 6. ~~gbrei t , “Constructive Methods in Pr og r am Verification ,” IEEE
Trans. on Software Eng ineering,  Vol .  SE— 3 , No. 3, pp. 193—209 (Ma y
1977)

47. F. W. D i jk s t r a , 1’ Discipl ine of Programming, Prentice—Hall , Inc.,
Engle~~od Cliffs , New Jersey (1976).

48. P. S. Boyer and 3 S. Moore , “A Lemma Driven Automatic Theorem
Prover for Recursive Function Theory,” Proc. Tnt. Joint Conf. on
Artific ial Intelligence, Cambr idge , Massachusetts (August 1977)

56

~—- -.---——--— — — -~~~~- 
- —~~~~~ :-~~~- --—~—— -T:



I

I

Append ix A

MACHINE PROOFS OF CONSISTENCY BETWEEN ALGEBRAIC SPECIFICATIONS

AM) A VCG IMPLEMENTATION

Ii



Append ix A

M~~ HINE PR~X~FS OF CONSISTF~~ Y BF~P,~EEN AWEBPI\IC SPECIFICATIONS

AND A WG IMPL EML~TATION

1. Proof of ‘.CS Specification for the Dripty Statement List.

Here we show the machine proo f of consistency for the function \CS
over an empty l i s t  of s ta tements  arid an a r b i t r a r y  pred icate , v i z . ,  that

‘.~ S(”NIL” ,Q) =

This proof is, of course, accomplished tr iv ially by definitional

expansion, as mad e clear by the mechanically—generated trace output .

In this proof and also the succeeed ing ones , l ines typed by the

user are prefaced by the prompt character  
—
. All other lines are

machine generated . The use r of the prover f i r s t  asks for an indented

pr int—out (pp ) of each theorem to be proved . Following each proof the
system prints out some tim ing statistics for that call to the funct ion

PROVE .

PP(NIL.T 1)

(EQU,~L (VCS “NIL” Q)
(COt’~ Q “ N I L ” ) )

(NIL.T}1r71 )

(PROVE N T L . T H M I )
This formula simplifi es, unfo l d ing  the d e f i n i t i o n  of \ X S , to:

(TRUE ) .

Q.E.D.

load average d u r i n g  proof: 1.117388
Elapsed t ime : .201 second s
CPU t irn ’~ ( devoted to theorem proving) : .091 seconds
IC tim e: .093 seconds
E’C~~Th~; consumed : 84

PROVEr
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2. Proof of \CS over statement l ist erwiing in a no—op .

If STAT is a no—op statement, it satisfies the predicate (NULLP

STAT). In that case ‘~~S(STL; STAT, Q) is supposed to be the same as
VCS(STL, Q) where STL is any legal list of statements. This theorem is

shown f i r s t, then the machine proof , which must consider four cases

correspond ing to the four types of no—op statements. Cbserve that in

this version the de f in i t ion  for no—op statements incl~xJ ed the statement

type COMM~~T (which was later eliminated in the formal language

definitions shown in Section II) .

PP NULL.THM

(IMPLIES (AND (LEG ALP STL)
(NULLP STAT))

(EQUAL (VCS (APPEND STL (CONS STAT “NIL”))
0)

(VCS STL C ) ) )
NULL. THM

(PROVE NULL .ThM)

This simplifies, using the lemmas APPEND.PEVE RSE , CAR.CCNS , and
CDR.CONS, arid expanding the definitions of NULLP, l\NC, VCS ,
IMPLIES , APPEND, REVE RS E , \CR, and LEGALP, to the following four
new goals:

Case 1. (IMPLIES (AND (LISTP STAT)
(EQUAL (CAR STAT) “LAPEL”))

(EQUAL (\JC P “NIL” Q)
(~0NS C “NIL”))).

However this again simplifies , un folding the definition of WP,
to:

(TRUE) .

Case 2. (IMPLIE S (AND (LTSTP STAT)
(EQUAL (CAR STAT) “COMMENT”))

(EQ UAL (VC R “ Ni t ” C)
(CONS 0 “NIL”))),

which ag2in s impl i f ies , expanding the function ‘ER, to:

(TRUE).

Case 3. (IMPLIES (AND (LTFTP STAT)
(EQUAL (CAR STAT) “SKIP”))

(EQUAL (VCR “NIL” Q)
(CONS Q “N I L ” ) ) )

wh ich we again simpl i f y, opening up the definition of \~ R, to:
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(TRUE).

Case 4 ( EQUAL (VCR “NI L” Q)
(CONS Q “NIL ” ) )

which again simplifies , unfolding VCP, to:

(TRUE).

Q.E.D.

Load average d u r in g  proof: .9096334
Elapsed time : 63.322 seconds
CPU t ime (devoted to theorem proving) : 12.399 seconds
JO t ime : .703 second s
CONSes consumed : 16453

PROVED

3. Proof of VCS over statement list end ing in an 1\SSLF~E.

Here we prove that  the specif icat ion:

~vtS (STL ; ASSUM E P, Q) = VCS (STL , P—>Q )

is sat isf ied , where STL is any legal Ust  of s tatements , and P , 0 are

a r b i t r a r y  pred icates.

PP(ASSUME . ThH)

(IMPLIE S (LEGAL P STL)
(EQUAL (VCS (APPEND STL

( CONS (CONS “AS SUME”
(CONS P “N I L ” ) )

“NIL ”)
0)

(VCS STr,
( CONS “IMPLIE S”

( CONS P ( CC*~S C “ N I L ” ) ) ) )
(/‘SSUMF.ThM)

(PR OVE ASSUME .TUM )
This  formuhi  s i m p l i f i e s, apply ing  APPEND.REVE’RSI, CAR.CONS, and
CDR.CONS, and o~r~n i r ~j up ~h definitions of ‘itS, I~TLIES , APPEND ,
REVE RS E , l~k~~~LP , and VCR , to t~~ new goals:

Case 1. ( IMPLIES ( AND ( LEGALP STL) (LT~TP STL) )
(EQUAL (VCR ( CONS (CONS “ASSUME”

(COt’~5 P “t~ IL ” ) )
(REVERSE STL))

0)
(VC R (REVERSE STL)
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(CONS “ IMPLIES”
(CONS P (CONS C “NIL”)))) )

which we again  simplif y,  applying the lemmas CDR.CON S ~nd
CAR .CONS , and opening up the function \itR , to:

(TRUE).

C~se 2 ( EQUAL (VC R “NIL ”
(CONS “ IMPLIES”

(CONS P ( CCNS C “NIL”))))
(CONS (CONS “ IMPLIES”

( CONS P ( EONS C “NIL”)))
“NIL ”)).

This again simplifies, expanding the function ‘1CR, to:

(TRUE).

Q.E.D.

Load average during proof: 1.338743
Elapsed time: 33.306 seconds
CPU t ime (devoted to theorem prov ing) : 3.452 seconds
IC time: .536 seconds
CON6es consumed: 6343

PROVE D

4. Proof of VTS over a statement l i st end ir~ in an ASSERT.

Here we show that  the specification:

‘~,tS(STL; ASSERT A , C) = VCS(STL , A) @ <A— >Q) >

is satisfied , where STL is any legal statement l is t , and 1’, Q ar e

a r b i t r a r y  pred icates.

PP T\SSFRT .TI-IM

( I M P LIES ( LFGAL P STL)
(EQUAL (VCS ( APPEND STL

( CONS (CONS “ASSERT” (COWS P
“NIL” )

“ N I L ” ) )
C)

(APPEND (VC S STL P)
(CONS (CONS “IMPLIES”

(CONS P (CONS C “ N i t ” ) ) )
“NIL” ) ) )

ASSERT. ThM
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(P ROVE ASSERT. ‘IHM )
This  s impl i f ies , using the lemmas PPPEND.REVE RSE , CAR.C ONS , and
CDR.CONS , and expanding VCS , IMPLIES , APPEND , REVERSE, ‘JCR, and
LEGALP, to:

(EQ UAL (APPEND (‘ICR “NIL” P)
( CONS (CONS “IMPLIES”

( CONS P (CONS C “ N I L ” ) ) )
“NI L”)

( CONS P
( CONS ( CONS 1t IMPL IES”

(CONS P (CONS Q “ N I L ” ) ) )
“NIL ” ) ) )

which we again simolif y,  using the lemmas CDR .CONS and CAR .CONS ,
and expanding the funct ions ‘ICR and APPEND , to:

(TRUE).

O .E.D.

Load average dur i ng oroof: 2.392729
Elapsed time : 32.954 seconds
CR3 t ime (devoted to th eorem proving ) : 2.898 seconds
IC t ime : .741 second s
(X)NSes consumed : 5412

PROVE D

5. Proof of ‘JCS over statement list end ing in assignment.

Here we prove tha t  the spec i f ica t ion :

‘ICS(STL; X:= A , Q) = VCS(STL , SUBST(P- X Q))

is sa t is f ied , whore STL is any legal s tatement l i s t , Q is an a r b i t r a r y

pred icate , X is a var iable  name, and A is any expression. The funct ion

SUI3ST (known to the theorem prover) is l i k e  the LISP function , i . e . ,

SUB ST(X ,Y , Z) is the resul t of subs t i tu t ing an occurrence of X for each

occurrence of Y in Z.

PP ASST.ThM

(IMPLIES (LEGALP STL)
(EQUAL (VCS (APPEND STL

(CONS (CONS “ : “

( CONS X
(CONS P

“NIL”)))
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“NIL”))
Q)

(VC S STL (SU!3ST A X Q ) ) ) )
1’.SST. ’flIM

(PROV E P SST.ThM)
This  s implif ies, using the l emmas APPEND. REVE RSE , CAR .CONS , and
CDR.CONS , and opening up the func t ions  SICS, IMPLIES , APPEND ,
REVE RSE , ‘ICR, and LECALP, to:

(EQUAL (VC R “NIL ” (SUBST A X Q))
(CONS (SUBST A X Q) “ N I L ” ) ) .

This again simpl i f ies , expanding the de f in i t i on  of ‘ICR, to:

(TRUE) .

Q. E.D.

Load aver ag e d u r in g  proof:  1.596421
El apsed t ime : 15.71 9 seconds
CPU t ine (devoted to theorem prov ing) : 2.49 1 seconds
IC time: .329 seconds
CONSes consumed : 4727

PROVE D

6. Proof of ‘ICS over statement l ist end ing in (XY1O .

Here we prove the spec i f ica t ion:

‘ICS(STL; GOlD LABEL (AS SERTING PRED ) , 0) = VCS (STL , PRED)

where STL is ~iny legal statement l is t , LABE L is any statement i~ bel , and

PRED is the assertion attached to the labelled s t a t e men t .

PP GO’IC~.’fl1M

(IMPLIES ( LEGAL P STL)
(EQUAL

(VC S (APPE ND STL
(CONS (CONS “CO’1~~”

(CONS LABEL
(CONS PRED “ N I L ” ) ) )

“NIL” )
Q)

(VCS STL PRED)))
GO~1D. ThM
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(PROVE O~YIO.~~1M)
This formula simplifies, appl ying the lemmas APPEND.REVERSE ,
CAR.CONS, and CDR .CONS , and opening up the definitions of ‘ICS,
IMPLIES , APPEND, REVERSE, ‘ICR , and LEGALP, to:

( EQUAL (VCR “ NIL ” PRED)
(CONS PRED “NIL ” ) ) ,

which again simplifies , unfolding the function ‘ICR, to:

(TI~JE).

Q.E.D.

Loa~ average during proof: 1.777559
Elapsed time: 16.588 seconds
CPU time ( devoted to theorem prov ing) : 2.566 second s
10 time : .32 seconds
CDNSe5 consuiied : 4291

PROVED

7. Proof of VCS over statement list end ir~ in a statement bloc k.

Here we prove that the specification:

‘.~CS (STL1; BEGIN STL2 END , Q) = VCS(STLI @ STL2 , 0)
is satisfied where STL1 and STL2 are any legal statement l ists.

PP(BEGIN. ThM )

(IMPLIES (AND (LEGPILP STL1)
(LEGALP STL2))

(EQUAL (VCS (APPEND STLI ( CONS ( CONS “BEGIN” STL2)
“NIL” )

0)
(VCS ( APPEND STL1 STL2)

0 ) ) )
(BEG IN. ThM)

(PROVE BEGIN. ThM)
This conjec tur e simplifies , applying APPENIJ.REVERSE, CAR.CONS,
and CDR.CONS, and expand ing the functions AND, \itS, IMPLIES ,
APPEND, REVERSE, and VCR , to t~ ) new conjec tures:

Case 1. (IMPLIES ( AND ( LEGALP STL.1 )
(LEGALP STL2)
(NOT (EQUAL ( APPEND STL1 STL2) “NIL” ) )
(NOT (LISTP ( APPEND STL1 S T L 2 ) ) ) )

(EQUAL (VCR (APPEND ( REVERSE STL2 )



r
(REVERSE STL1))

Q)
“UNDEFINE D”)

Name the above stbgoal *1.

Case 2. (IMPLIES ( AND ( LEGALP STL1)
(LEGALP STL2)
(EQUAL ( APPEND STL1 STL2 ) “NIL ” ) )

(EQUAL (VCP (APPEND (REVERS E STL2 )
(REVERSE STL1))

Q)
(CODS 0 “NIL”))),

which we ~~u1d normally push and work on later by induction.
But since we have already pushed one goal split off of the
orig inal input we will disregard all that we have pr ev iously
done , give the name *1 to the orig inal input , and ~~rk on it.

So now let’s consider:

(IMPLIES (AND (LEGALP STL1) ( LEGALP STL2))
(EQUAL (VCS ( APPEND STL1

( CONS (CONS “BEGIN ” STL2) “NIL” ) )
Q)

(VCS ( APPEND STL1 STL2) Q ) ) ) .

~~ gave thi s the name *1 above. Let us appeal to the induction
pr inciple. Four induct ions are suggested by terms in the conj ec-
ture. They merge into three likely cand idate inductions , none of
which is unflawed . However , one is more l ikely than the others.

~~ will  ind uct according to the following scheme :

(AND (IMPLIES (NOT (LISTP STL1))
(p STL1 STL2 Q ) )

(IMPLIES ( AND (LISTP STL1)
(p (CDR STL1) STL2 Q))

(p STL1 STL2 Q ) ) ) .

The ineouality CDR .LESSP establishes that the measur e ( COUNT
STL1) decreases according to the wel l—fo unded function LESSP in
the induction step of the scheme. The abov e induction scheme
leads to t~~ new conjectures:

Case 1. (IMPLIES
(NOT (LISTP STL1))
(IMPLIES ( AND ( LEGALP STL1) (LEGALP STL2) )

( EQUAL (VC S ( APPEND STL1
(CONS (CONS “BEGIN ”

STL2)
“NIL” ))

0)

A-S
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(VCS (APPEND STL1 STL2) Q)))).
This simpl ifies , applying ftc lemmas CAR .CONS , CDR .CONS ,
PLISTP.REVERSE, and APPEND.RIQ!T.ID, and expanding LEGALP , AND,
APPEN D, REVERSE , ‘ICR , \CS , and IMPLIES , to:

(TRUE).

Case 2. (IMPLIES
(AND (LISTP STLI )

(IMPLIES (AND (LEGALP ( CDR STL 1))
(LEC-ALP STL2))

(EQU!-L (VCS (APPE ND ( CPR STL1)
(CONS (CONS “BEGIN” STL2)

“NIL”)
0)

(VC F (A PPEND (CDR STL1 ) STL2) Q ) ) ) )
( IM PLIES ( AND (LEGALP STL1) ( LEC~ALP STL2))

( EQUAL (VCS ( APPEND STL1
(CONS (CONS “BEGIN ” STL2)

“ NIL ”)
0)

(VCS (APPEND STL1 STL2 ) Q ) ) ) ) .
This simplif ies, appl y ing the lemmas PPPEND.REVERSE , C1\R.CCNS,
CDR.CONS, and ASSCCIATIVITY.OF .APPEND, and expanding the func-
t ions AND , APPEND, REVERSE , ‘ICR , ‘ICS, and IMPLI ES , to:

(TRUE ) .

That f i n ishes the proof of *1. Q.E.D.

Load average dur ing proof: 1.19 1621
Elapsed time: 183.979 seconds
CPU t ime (devoted to theorem prov ing) : 40.169 seconds
TO t ime : 2.05 seconds
CONSes consumed: 63919

PRCVED

8. Pr oof of ‘ICS over statement l ist end ing in PROVE.

h ere we prove that  the spec i f ica t ion :

WS(STL; PROVE P , 0) = VCS (STL, P) @ VCS(STL , P->Q )

is sa t i s f ied , where 5Th is any legal statement l i s t  and P ,Q are

pr ed icates.

P — 9
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_PP PROVE . ThM

(IMP L IES (LEGALP STL)
(EQ UAL (VCS (APPEND STL

(CONS (CONS “PROVE ”
(CONS P “NIL”))

“NIL” )
Q)

(APPEND (VC S STL P)
(VCS STL

(CONS “IMPLIE S”
(CONS P (CONS 0 “NIL”)))))))

PROVE. ‘IHM

(PROVE PROVE.ThM)
This conj ecture simplif ies , applying the lemmas APPEND.REVERSE,
CAR .CONS , and CDR.CONS, and unfolding the definitions of ‘ICS,
IMPLIES , APPEND , REVERSE , ‘ICR, and LEGALP, to th~ formula :

(EQUAL ( APPEND (VCP “NIL” P)
(VC R “NIL”

(CONS “I MPLIES”
(CONS P (CONS ç’ “ N I L ” ) ) )

( CONS P
(CONS (CONS “IMPLIES”

( CONS P (CONS C “ NIL” ) ) )
“NIL ” ) ) ) .

However this again simplif ies , r ewr i t in g  w i t h  CDR .C~ N~ and
CAR .CONS, and expanding VCR and APPEND, to:

( TRUE).

Q .E .D.

Load average d u r in g  proof:  4 .81208
Elapsed time: 31.836 seconds
CPU time (devoted to theorem proving) : 4 .201  socor~is
IC time : .8 seconds
O~NSes consumed : 6574

~. Proo f of VCF ~~~ t3 t r~m-n~ n ’ ir ~ Ir

t e ~~ :r’~ -~; that th ~~~ i f  t l ) f l  :
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VCS(STL; ABORT, 0) = VCS (STL , T)

is satisfied , where STh is any legal statement list and ci is any

pr ed icate .

_PP ABORT. ThM

(IMPLIES ( LEGP,LP STL)
( EQUAL (VCS (APPEND STL ( CONS (CONS “ ABORT” “NIL” )

“NIL” )
0)

(VCS STL T ) ) )
ABORT. ThM

( PROVE ABOPT.ThN)
This simplifies, applying the lemmas APPEND.REVERSE , CDR.CONS,
and CAR.CONS, and un folding the definitions of \~ S, IMPLIES ,
REVERSE, APPEND , ‘ICR, and LEGALP , t :

(TR UE) .

Q.E.D.

Load average during proof: 1.684852
Elapsed time: 4.256 seconds
CPU time (devoted to theorem proving) : 2.521 seconds
TO time: .179 seconds
CONSes consumed : 4355

PROVED

This completes the proof traces generated by the recursive function

theorem prover in demonstrating consistency between the LISP
implementation shown below and the al gebraic specifications SO— Sli given

in Sec . II—D .

10. LISP Code for the Verified Implementation of ~CG

Bel ow we exhibit one v e r i f i ed  implementation of IICG ( the

ver i f i ca t ion  condition generator for the language SL) . This par t icular

version was wr i t t en  in MacLISP. ~~ hav e also ver i f ied  an InterLISP
version that d i f f e r s  only in minor ways from the one shown . Anothe r

InterLISP vet.,ion that has been written (but which is as yet unver i f ied)

A-il



partitions the main function ‘ICR into eleven s~t func t ions , such as
\~ R:IF , ‘.~ R:ASST , and VCR:ASSU ’IE , each correspending to one of the
“cond ” clauses in \~ R shown below.

(DEFIJN ‘~~G (SL Q) (‘ICR (REVERSE SL) 0))

(DEFUN \~CR (RL ~~~T)
(COND ( (NULL RL) (LIST POST) )

( (NULLP (CAR RL) ) (VC R (CDR RL) POST) )
( ( EQ (CAAR RL) ‘ ASSIt’IE)

(VC R ( CDR RL)
(LIST ‘IMPLIES (CADR (CAR PL) ) POST)))

( (EQ (CAM RL) ‘ASSERT )
(APPEND (VCR (CDR RL) (CADR (CAR RL)))

(LIST (LIST ‘IMPLIES
(CADR (CAR RL) )

P O S T ) ) ) )
( (EQ (CAAR RL) ‘G(YIO )

(VCR ( CDR RL) (CADDR (CAR R L ) ) ) )
( (EQ (CAAR RL) ‘PROVE )

( APPEND (VCR (CDR RE) (CADR (CAR RE)))
(VCR (CDR RE)

(LIST ‘IMPLIES
(CADR (CAR RL) )
POST )) ) )

((EQ (CAM RE) ‘BEGIN)
(VCR (APPEND (REVERSE (CDR (CAR R L ) ) )  (CDR RE))

POST) )
( (EQ (CAAR RE) ‘IF )

(APPEND (‘/CR (APPEND (LIST (CADDR (CAR R E ) ) )
( LIST (LIST ‘ASSIi’IE

(CADR (CAR R L ) ) ) )
(CDR RE ))

lOST)
(VC R ( APPEND (LIST (CADDDR (CAR RLfl )

(LIST (LIST ‘ASSLJIE
(LI ST ‘NOT

(CADAR R L ) ) ) )
(CDR RL) )

POST) ) )
( (EQ (CAM RE) ‘ : )

(VCR ( CEP RE)
(SUBST (CADDR (CAR RE)) (CADR (CAR R E ) )  POST)))

( (EQ (CAM RE) ‘WHILE )
( APPEND (VCR (Ct1~ RL)(CADR (CAR R E ) ) )

(‘ICR (APPEND (CDDDR (CAR RE))
(LIST (LIST ‘ASSIiIE

(LIST ‘ANT)
(CPd~ (CAR RE))
(CADDAR R L ) ) ) ) )
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(CADR (CAR RL) ))
(LIST (LIST (QUOTE IMPLIES)

(LIST (QUOTE AND)
(CADR (CAR R E ) )
( LIST (QUOTE NOT)

( CADDR (CAR R L ) ) ) )
P O S T ) ) ) ) )

( ( EQ (CAM RL) ‘ ABORT) (VCR (CDR RL) T ) )
(T (PRINT (LIST ‘ERROR :

( CAAR RE)
‘IS
‘UNDEFINED))

(IcC G ) ) ) )

(DEFUN NULLP (S)
(OR (NULL 5)

(EQUAL S ‘ (SKIP) )
( EQUAL (CAR S) ‘CCMME2~JT)
(EQ (CAR S) ‘LABEL )))

Observe that the function VCR is defined so that input of an
unrecognized statement l ist (as argument RL) pr oduces an error break

(IcC C) .  In the actua l def in i t ion  of I/CR supplied to the theorem prover
thi s has been replaced by the resul t “UNDEF INED” , since the theorem

pr over insists upen total functions. These definitions are shown in the
next section of this appendix.

11. Definitions Pr ov ided to the Recursive Function Theorem Prover

We show he re the fo rmal defini t ions (“ DEFNS ”) that were prov ided to
the Boyer—Moore Theor em Prover for Recursive Functions in order to allow
the Prover to demonstrate the consistency theorems.

Some of these defini t ions define the (abstract) syn t ax of SL
programs. The functions NULLP (defining the syntax of no—ops in SL) ,
PSRTNP (definin g the syntax of predicates in SL) , and AISSTP (defining
the syntax for assig rinent statements in SL) are of this type. In
addition , the func t ion LECALSTATP g ives the syntax for “statement ” in
SL, whil e LEGALP defines the syntax for “statement—list ” .
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The main recursive function defini t ions are those for ‘ICS, the top-
level function of the ~~~~ and ~~s stbfunction I/CR, which does the

actual work (on a reversed copy of the first argument to ‘ICS, a

statement—list) . Both of these are intended to be accurate Boyer—Moore

CEFN versions of the actua l implementation (which happens to be in
MacLisp) . This translation step was done by hand , but , in pr incipl e , it

could have been done by a mechanical translation since there is little

rrE re to do than translate st~rh things as LISP “cond ’s” into Eoyer—Moore
three—argument IFs, and the like.

(DE FN NTJLLP (5)
(IF (LISTP S)

(IF (OR (EQUAL (CAR 5)
“SKIP” )

( EQUAL (CAR S)
“ LABEL”)

(EQUA L (CAR SI
“cc~lfr,EN’r ” I

T F)
( EQUAL S “NIL ” ) )

NIL)

(DEFN ASSTP (SI
(IF (LIST? S)

( EQUAL (CAR S)
‘~

F)
NIL)

(DEFN ASR’1~ P (A)
(IF (NLISTP A)

T
(PLISTP A ) )

NIL)

(DEFN
LECALSTATP
(S)
(IF

(NLISTP S)
( EQUAL S “NIL ”)
(IF
(NULLP S)
T
(IF

( ASSTP 5)
T
(IF
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(AND (EQUAL (CAR SI
“ ASSERT”)

(ASR~NP (CADR S ) ) )
T
(IF

( AND (EQUAL (CAP S)
“ASSU4E” )

(ASRrNP (CADR S)))
T
(IF

( AND ( EQUAL (CAR S)
“PROVE”)

(ASm’NP (CADR S)))
T
(IF

( AND ( EQUAL (CAR S)
“BEGIN” )

(PLISTP (CDR S ) ) )
T
(IF
(EQUAL (CAR S)

~~~~~
T
(IF ( EQUAL (CAR S)

“ABORT”)
T
(IF ( AND (EQUAL (CAR S)

“WHILE ”)
(ASRTNP (CADR S) )
(ASR~~JP (CADDR S))
(LEGALSTATP (CADDDR S ) ) )

T
( AND (EQUAL (CAR S)

“ IF”)
(AS RTNP (CADR S) )
(LEGALSTATP (CADDR 5))
(LEGALSTATP (CADDDR S) )  . . .)

NIL )

(DEFN LEGP.LP (L)
(IF (NLISTP L)

(EQUAL L “ NIL” )
(AND (LEGALSTATP (CAP (REVERSE L)))

(LECALP (REVERSE (CDR (REVERSE 14)))))
NIL)

(DEFN

(RL Q)
(IF

(EQUAL RL “NIL”)
(C~ E 0 “NIL ”)
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(IF
(NULL? (CAR RE))
(VCR (CDR RE)

0)
(IF

(ASSTP (CAR RE ))
(‘ICR (CIDR RE)

(SUBST (CADDR (CAR RE))
(CADR (CAR RL) )
0))

(IF
( EQUAL (CAM RE)

“ASSTYIE”)
(VCR (CDR RE)

(CONS “ IMPLIES ” (CONS (CADR (CAR FL) )
(CONS Q “ N I L ” ) ) ) )

(IF
( EQUAL (CAM P14

“ASSER~~’)
(APPEND (VCR (COP FL)

(CADR (CAR RL)))
(C(~E ( CONS “ IMPLIES”

(CONS (CADR (CAR RE ))
(CONS Q “NI L ” ) ) )

“NIL” ) )
(IF

(EQUAL (CAM RL)
~~~~~~~~~ )

(VCR (CDR RE)
( CADDR (CAR R E ) ) )

(IF
( EQUAL (CAM FL)

“BEGIN”)
(‘/CR (APPEND ( REVERSE (CDR (CAR R L ) ) )

(CDR RE ))
Q)

(IF
( EQUAL (CAM FL)

“IF ”)
(APPEND

(VCR
(CONS
(CADDR (CAR RE))
(CONS ( CONS “ P.SSIJIE”

(CONS (CADR (CAR FL) )
“NIL” ) )

(CDR F L)) )
Q)

(VC R
(CONS

(CADDDR (CAR RE))
(CctE
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(CONS “ ASSIJIE”
(CONS “ NOT”

( CONS (CADR (CAP FL) )
“NIL ” ) ) )

(COP F L ) ) )
Q ) )

(IF
( EQUAL (CAM RL)

“PROVE”)
( APPEND

(VCR (COP RE)
( CADR (CAR R L ) ) )

(VCR (COP RE)
(CONS “ IMPLIES”

(CONS (CADR (CAR FL) )
( CONS Q “NIL ” f l ) ) )

(IF
(EQUAL (CAM FL)

“ ABORT” )
(VCR (COP FL)

T)
(IF

(EQUAL (CAM FL)
“WHILE”)

(APPEND
(VCR (COP FL)

(CADR (CAR R E ) ) )
( APPEND

(VCR
(CONS

(CADDDR (CAR RE))
(CONS

(CONS
“ASSUM E”
(C(~~
(CONS

(CONS
(CADR (CAR FL) )
(CONS

(CADDR (CAR RL) )
“N I L ” ) ) )

“NIL ” ) )
“NIL”)

(CADR (CAR R L ) ) )
(C(~E

(CONS
“ IMPLIES”
(C~~~
(CONS
“AND”
(CONS

A-l 7



(CADR (CAR FL) )
(CONS

(CONS
NOT”

(CONS
(CPDDR ( CAR FL) )
“NIL ” ) )

“~sTI L”) )
(CONS 0 “NIL”)))

“NIL” ) ) )
“TJNOEFINED” ) ) ) ) ) ) ) ) ) ) )

NIL)

(DEFN ‘JCS (STL 0)
(IF (LIST? STL)

(‘ICR (REVERSE STL)
Q)

“UNDEF INED” ) )
N I L ) ) )

The LISP functions , TLIST and TLIST1, whose defi nitions appear

below , are auxiliary (util ity) func t ions designed to tranlate LISP list

expressions that represent SL programs such as:

‘((ASS UM E B) (: X A) (IF P S i  (BEGIN S2 S 3 ) ) )

into the required Boyer—Moore syntax , in this case into :

‘ (CONS (CONS “ ASSUME” (CONS B “ N I L ” ) )
(CONS (CONS “ =“ (CONS X (CONS A “NIL” ) )

(C(~~ (CONS “IF”
( CONS P (CONS SI

(CONS (CONS “BEGIN ”
(CONS S2

(CONS S3 “NIL”) .. .)

(TLIST
[LAMBDA (L)

( COND
( (STR INGP L ) )
( ( A’lttl L)

( MKSTR ING L) )
(T ( LIST (QUO’rE CONS)

(TIJIST (CAR L) )
(TLIST1 (COR L])

(TLIST1
( LAMBDA (L)

(COND
((STR INGP L ) )
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((NULL L)
“NIL” )

((ATOM L)
L)

(T (LIST (Q~~ rE CONS)CON[)
((LISTP (CAR L))

(TLIST (CAR L ) ) )
(P (TLTST 1 (CAR L}

(TLIST1 (COP L])

TLIST was used to help translate thc~ algebraic soecifications to be

prov ed into the Theorem Prover ’ s syntax.
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Appendix B

REACHING AGREEMENT IN THE PRESENCE OF FAULTS

1. I n t r o d u c t i o n

F a u l t - t o l e r a n t  sy s t ems  often require a means by which independent

processors or p rocesses  can a r r i v e  at  an exact  mutual agreement of some

kind . It may be necessary , for examp le , for the processors of a redun-

dant system to synchronize their interna l clocks periodically . Or they

may have to settle upon a value of a time-varying input sensor that gives

each ot them a slightl y different reading. In the absence of faults ,

reaching a satisfactory mutual agreement is usually an eas matter. in

most cases , it suffices simp ly to exchange values (times , in the case of

clock synchronization) and compute some kind of average . In the presence

of faulty processors , however , simp le exchanges cannot be relied upon ; a

bad processor might report on e value to  a gi v en pr ocesso r , and another

va lue to some o t h e r  p r o c e s sor s , caus ing  each to calculate a different

“a ve rage . ”

One mi ght imagine tha t the e f f e c t s  of faulty p r o c e s s o r s  cou ld  be

dealt with through the use of voting schemes involving more than one

round of information exchange ; such schemes might force faulty processors

to reveal themselves as faulty , or at least to behave consistentl y enough

with respect to the nonfaulty processors to allow the latter to reach an

ex a c t  a g r e e m e n t . As we will show , it is not always possible to devise

schemes of this kind , even if it is known that the faults- processors are

in a m i n o r i t y .  A l g o r i t h m s  tha t a l l o w  exac t  a g r e e m e n t  to be re ached  by

the  n o n l a u l t y  p r o c e s s o r s  do exist , however , if  they s u t f i c i e n t l v  o u t n u m b e r

the i a u l t y  o a e s ,  ‘

Our  r e s u l t s  a r e  f o r m u l a t e d  u s i n g  the  n o t i o n  of i n t e r a c t i v e  consis-

t ency ,  w h i c h  we d e f i n e  as f o l l o w s , C o n s i d e r  a set  of n i s o l a t e d  proces-

sors , of which  i t  is known tha t no more than  m a re  f a u l t y .  i t  is not

known , however , w h i c h  p r o c e s s o r s  a re  f a u l t y .  Suppose  that the p rocessors
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can c o mmu n i c a t e  o n i y  b y means  of t w o - p a r t y  me ssages . the communica tion

medium is p r e s u m e d  to be f a i l — s a f e  and of neg ligible delay . ftc sender

o f a m e s s a g e , moreover , is a lways i d e n t i f i a b l e  b y the  r ec e i v e r . Suppose

a lso tha t  each proces so r  p has s eine p r i v a t e  v a lu e  o~ information ( s u c h

as i t s  c lock  value or i t s  r e a d i n g  of some s e n s o r ) .  The question is , f o r

given m , n � 0, whe ther i t  is p o s s i b l e  to dev i se  an a l g o r i t h m  based  on an

exchange  of m e s s a g e s  tha t w i l l  a l l o w  each n o n f a u l t y  p r o c e s s o r  p to com-

p u t e  a vec to r  of v a l u e s  w i t h  an element for each of the n processors ,

such t h a t :

(1)  The n o n f a u l t y  p r o c e s s o r s  compu te  exactly the same vector ,

( 2 )  The e l e m e n t  of t h i s  v e c t o r  c o r r e sp o n d i n g  to a g iven n o n f a u l t v
pr o c e s s o r  is t he p r i va t e  va lu e o f t ha t  p r ocesso r .

N o t e  t h a t  the  a l g o r i t h m  need not reveal which processors are  f a u l t y ,

ar d  tha t the  elements of the computed vector corresponding to f a u l t y  pro-

cesso r s  may be a r b i t r a r y - - i t  m a t t e r s  o n ly  t h a t  the  n o n f a u l t v  p r o c e s s o r s

c o m p u t e  exactly the  same v a l u e  f o r  any g iven  f a u l t y  p r o c e s s o r ,

We w i l l , sa y t ha t  such an a l g o r i t h m  ach ieves  i n t e r a c t i v e  c o n s i s t e n cy ,

s in ce i t  a l lows t h e nonfaultv processors to come to a consistent view of

the v a l u e s  held by a l l  t he  p rocesso r s , i n c l u d i n g  t h e  f a u i t v  o n e s . The
co m p u t e d  v e c t o r  is c a l l e d  an i n t e r a c t i v e  c o n s i s t e n c y  ( i c . ) vect or. Pace

i n t e r a c t i v e  c o n s i s t e n c y  has been ach ieved , eac h n o n f a u l t v  p r o c e s s or  can

a p p l y an a v e r ag ing  or f i l t e r i n g  f u n c t i o n  to the  i . c . v e c t or , acco r d i n g

to the  needs  o f  the  a p p l i c a t i o n . S ince  each n o n f a u l t y  p r o c e s s o r  a p p l i e s

t h is lone don to t h e  same  v ec to r of v a l u e s , a n e x a c t  a g r e e m e n t  is n ee e s  —

sa r i lv  r e a cb e d

ge w i l l  show in the f o l l o w i n g  s e c t i o n s  t h a t  algorithms c a n  be d ev i s e d

to g o n r a n L e t -  i n t e r a c t i v e  c n s i s t e n cv  f o r  and o a l v  f o r  n , m such that

n � 3m + I , I t  w i l l  f o l l o w , i n p a r t i c u l a r , tha t, a minimum ot  t o u r  p r —

c e s sor s  is r e q u i r e d  in t i n e  s i n g t e — t a u l t  case , ~ e w i l l  ilso show , hoyeve r ,

t h a t  i n t i - r l c t i v &  c o n s i s t en c y  c an  be a s s u r e d  for a r b i  t r i r v  n � m � 0 i i

i t  is is sum ed tha t fa o  I t y  p r o c t - s s o  r s can  r e f u s e  t o  pa ss n into rmat ion

obta m e d  I ro :u o t h e r  p I’ oc c ssor s  , b u t  c a n n o t  f a l se l y i’ c p~~ 1 1  t h i s  i n f o r m a —

t i u n . T h i s  a s s n i a p t i o n  can he a p p r o x i m a t e d  i n  practice us jug , inithc n n t  i c i —

to r s , w h i c h  we d i s c u s s  in S e c t i on  3 .
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We begin in Section 2 with a descri p t i o n  of the sing le-faul t case .

Section 3 is concerned with the generalization to n � 3m +1 and Section 4

with an impossibilit y argument for n � 3m. Section 5 gives an al gorithm

for arbitrary n in � 0 that works under the r e s t r i c t e d  a s s u m p t i o n  s t a t e d

above . Conclusions and issues for future stud y arc given in Section 6.

Problems similar to  t h e  one c o n s i d e r e d  h e r e  h a v e  been s t u d i e d  by

Davies and Wakerl.y 1l ,~.

2 . The Sing le-Faul t  Case

In or der to give  the reader a f e e l i n g  f o r  the  p rob l em , we begi n w i t h

a p r o c e d u r e  f o r  o b t a i n i n g  interactive consistenc y in the simp le case ot

m = l , n = 4 .

The p r o c e d u r e  c o n s i s t s  of an exchange of messages , f o l l o w e d  b y the

c o m p u t a t i o n  of the i n t e r a c t i v e  c o n s i s t e n c y  vec tor  on the bas i s  of the

results of the  exchange .

Iwo r o u n d s  of i n f o r m a t i o n  exchange are r equ i r ed . In the f i r s t  round ,

the p rocessors  exchange t he i r  p r iva te  v a l u e s ,  in the second round , they

e x c h a n g e  the results obtained in the first round . The faulty processor

(if there is one)  may “lie , ’ of c o u r s e , or r e f u s e  to send messages. If

a nontaulty processor p fails to receive a message it expects from some

other processor , p simp ly chooses a value at random and acts as if tha t

v a l u e  had been sent.

the exchange having been comp leted , each nonfaulty processor p

r~~, rds i t s  pr i va te  va lue  V P fo r  the element of the interactive consis-

tency corresponding to p itself . The element corresponding to every

other processor q is obtained by examining the three received reports of

q ’ s v a l u e  (one of these was ob ta ined  d i r e c t l y iron q in the first round , F

and the others f rom the remaining two processors in the second round).

1: at  l e a s t  two of the  t h r ee  r epo r t s  a g r ee , the majority va lue  is used .
Otherwise , a default value such as “NIL” is used.

To see that this procedure assures interactive consistency , first

note  t h a t  i f  q is nonfaul ty , p w i l l  receive \ q both f r o m  q and t rom the
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o t h e r  n o n f a u l t y  p r o c e s s o r ( s ) .  p w i l l  t h u s  record V for q as de~ ircd .

Now suppose  q is f a u l t y .  We m u s t  sh ow o n l y  t ha t  p and the  ocher  two n o n -

f a u l t y  p rocessors  record the  same v a l u e  f o r  q .  If e v e r y  n o n f a u l t y  proces-

sor r eco rds  N I L , we a r e  done . Othe rwise , some nonfau lty processor , say

p ,  r eco rds  a n o n - NI L  v a l u e  v , h a v i ng  rece ived  v f r o m  at  l e a s t  two o t her

p r o c e s s o r s . Now if p r e c e i v ed v from b o t h  of the o t h e r  n o n f a u l t y  proces-

sors , each other nonfaulty processor must receive v from ever\’ processor

o t h e r  than p (and possibly from p as ~‘ell); every nonfaulty processor w ill

thus record v. Otherwise , p m u s t  have r ece ived  v from a l l  p r o ce s s o r s

o t h e r  t han  some other nonfaulty processor p ’ . In t h i s  case  p ’ r e c e i v e d  v

f r o m  a l l  p r o c e s s o r s  o t h e r  t han  q (so p ’ r eco rd s v)  and a l l  o t h e r  n o n f a u l t r

processors received v from all processors other than p ’ . All noniaulty

processors therefore record v as required .

3. A Procedure for n � 3m + 1

Recall that the procedure given in the last section requires two

r o u n d s  of information exchange , the  first c o n s i s t i n g  of c or n mu n i c a t i o n ~- 01

t h e  f o r m  “my p r i v a t e  v a l u e  is ” and the second c o n s i s t i n g  of c o m m u n i c a t i o n s

of t h e  f o r m  “ p rocessor  x to ld  me h is  p r i v a t e  v a l u e  is . . . “ . In the gent ral

ca se of  in f a u l t s , in + I rounds a rc  r e q u i r e d .  In o r d e r  to  d e s c r i i w  t h e

a l gorithm , i t  w i l l  be c o n v e n i e n t  to c h a r a c t e r i z e  t h i s  c x e l n i n i g c  o t  m e s sa g e s

in  a m o r e  f o r m a l w a y .

Let  P be t h e  set of processors , and V a set , of v a l ue s . For k �

we d e f i n e  a k — l e v e l  s c en a r i o  as a m a p p i n g  fr om the SeL  1 noii ennptv strings

o v e r  P of length ~ k + 1 , to V. For  a g iven  k— level s c e n a r i o  and

s t r i n g  w = p
1 ~~~~~~~~~ 

2 � r � k + I , :(w) is int erp ret ed is the value

t e l l s  t h a t  p
3 

t o l d  p
2 

t h a t  p ,  t o l d  p
3 

. . . t h a t  p t o l d  
~ r — l  ~~ r

p r i va t e  v a l u e . For a s i n g l e — e l e m e n t  s t r i n g  p ,  ~ ( p )  s imp ly  des  i g i l a t e s  p ’ s

p r i v a t e  v a l u e  V . A k — l e v e l s c e n a r i o  t i n i s  su m m ar i ~~i s  t h e  o u t c o m e  ot  a
p

k — r ound  exchange of information. Note that , for i g i v e n  s u b s e t  1 n o n —

[ tu  1 t y  p r o c e s s o rs  , o n ly  cc r t a  i f l  m a p p i n g s  a ri  possible s c e n a r io s  ; in
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p a r t i c u l a r , s ince n o n f a u l t y  p r o c e s s o r s  are always t r u t h f u l in r e l ay ing
information , a scenario must satisf y;

c (pqw) = c ( q w )

fo r  each n o n f a u l t y  processor q ,  a r b i t r a r y  processor  p ,  and s t r i n g  w.

The messages a processor p receives in a scenario are  given b y the
restriction c~-~ of ~ to strings beginning with p. The procedure we present

now for arbitra ry in � 0, n � 3m + 1, is described in terms of p ’s com-

putation , for a given O~,, of the element of the interactive-consistenc y

vector corresponding to each processor q. The computation is as follows :

(I) If for some subset Q of P of size > (n+ m ) / 2  and some value v ,

~~ (pwq) = v for each string w over Q of length � m , p records v.

(2) Otherwise , the algorithm for rn-I , n—l is recursively app lied
with P rep laced by P - fq ~~, and 

~
p by the mapping 

~~ 
defined

by:

~p (PW) = ~p (pwq)

f o r  each s t r i n g  w of l e n g t h  � m over p - [q I . If at least
L~n+m)/2J of the n-l elements in the vector obtained in the
recursive call agree , p records the common value , otherwise
p records NIL .

Note that corresponds to the m-level subscenario of ~ in which q

is excluded and in which each processor ’s private value is the value it

obtains directl y from q in ~~. Note also tha t the algorithm essentially

reduces to the one given in the last section in the case m = 1 , n =

The proof that the algorithm given above does indeed assure interac-

tive consistency proceeds by induction on m~

Basis m = 0 .

In t h i s  case , no p rocesso r  is f a u l t y ,  and the a l g o r i t h m  a l w a y s  ter-

minates in step (1) with p recording Vq for q.
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In d u c t i o n  S t e p  in > 0.

F i r s t  no t e  t h a t  if q is n o n f a u l t y ,  ~~ (pwq ) = \‘q f o r  each s t r i n g  i of

l e n g t h  ~ in over the  set of nonfaulty processors . This set has n-in members

(which , since n � 3m , is > (n+m)/2) and so satisfies the requirements for

Q in step (1) of the al gorithm . Any other set satisf ying these require-

merits , moreover , must contain a nonfaulty processor (Since it must be of

size > (n+m)/2 , and n > 3m + 1), and must therefore also 3-ield V
q 

as the

common value. The algorithm thus terminates at step (1), and p records

Vq f o r  q as req u i r e d .

Now s u p p o s e  t h a t  q is f a u l t y .  We m u s t  show tha t the  v a l u e  p r e c o r d s

for q agrees with the value each other nonfaulty processor p ’ records

f or q.

F i r s t  c o n s i d e r  the  case in w h i c h  b o t h  p and p ’ e x i t  t he p r oc edu r e a t

s t ep  ( 1) ,  each hav ing  f ou n d an app r o pr ia te  se t  Q. Since each such set

has more t han  ( n + m ) / 2  members , and s ince  P has onl y n members  in a l l ,

the  two se t s  m u s t  have more than  2 ( ( n + m ) / 2 )  - n = in common members .

Since at least one of these must be nonfaulty , the two sets must give

rise to the same value v , as required.

Next suppose that p ’ exits at step (1), having found an appropriate

set Q and common value v , and that p executes step (2). We claim that in

the vector of n-l elements that p computes in the recursive call , the ele-

ments c o r r e s p o n d i n g  to  members of = Q - r q~ are equal to v. Since

has at least L (n-i-m)/2i mem b e r s , it will then follow tha t p records v in

accordance with step (2). To see tha t the elements corresponding to

m e m b e r s  of a r e  i n d e e d  eq u a l  to  v , r e c a l l  tha t t h e  mapp ing  C~~ t h a t  p

u s e s  to  c o m p u t e  the vector in the r e c u r s i v e  c a l l  is the  r e s t r i c t i o n , to
A

s t r i ng s  b e g i n n i n g  w i t h  p ,  ot the  r n - l e v e l  s c e n a r i o  d e f i n e d  b y :

A
: (w)  = (w q )

f o r  each string w ot  L e n g t h  in o v e r  P — ~q . by  induc t ion hypothesis ,

t h i s  v e c t o r  is  i d e n t i c a l  to t h e  one p ‘ w o u l d  h av e  c o m p u t e d  u s i n g  the

res  Lric t ion ol  had  p ‘ made  the recursive c a l l . >l o r i - o v er  , the  va lue

p ’ would have computed for the element of t h i s  vec  t or corresponding to a

11-8



given q ’ in must  be v , s ince and v s a t i s f y step ( 1) of the a l g o r i t h m .
(Note  that  is of s i ze  � [ ( n + m ) / 2 J  > [(n-I) + ( m - 1) ] / 2 , and that

~p~~(pwq ’) = ~~ u (p ’wq ’q) = v fo r  each s t r i n g  w of length ~.m-l  over

The case in which p exi ts  at  s t ep  (1) and p ’ exits at step (2) is

handled similarl y.

In the one remaining case , both p and p ’ ex i t  a t  s tep  ( 2 ) .  In t h i s
case both recurse , and must , by induction h y p o t h e s i s , compute  exac t l y the

same vec to r , and hence the same v a l u e  fo r  q.  Q. E .D.

4 . Proof of Impossibility for n ‘— 3m +1

The procedure of the last section guarantees interactive consistency

onl y i f  n � 3m + 1. In t h i s  s e c t i o n  i t  is shown t h a t  t h e  3m + I bound is

tight. We w i ll prove not only that it is impossible to assure interactive

consistenc y for n < 3m + 1 with m + 1 rounds of information exchange , but

also that it is impossible , even allowing an infinite number of rounds of

exchange (i.e. , using scenarios mapping from all nonempty strings over

P to V).

Just to gain some intuitive feeling as to why 3m processors are not

s u f f i c i e n t , cons ide r  the case of three  p rocessors  A , B , C , of which  one ,

s a y  C , is f a u l t y .  By p reva r i ca t ing  in j u s t  the right way , C can thwart

A ’s and B ’s efforts to obtain consistency. In particular , C ’s messages

to A can be such as to suggest to A that C’s private value is , sas- , 1 ,

and that B is faulty. Similarl y ,  C ’s messages to B can be such as to sug-

gest to B that C ’s private value is 2, and that A is faulty, If C p lays

its cards just right , A will not be able to tell which of B and C is

faulty , and B will not be able to tell which of A and C is at fault . A

w i l l  thus have no ch oice  but  to record 1 for C ’s value while B must r ecord

2 , d e f ea t i n g  in t e r a c t i v e  c o n s i s t e n c y .

I n  o r d e r  to g i v e  a precise statement of the impossibility result

and its proof , a few forma l definitions are needed .
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F i r s t , d e f i n e  a scenar io  as a mapp ing from the set P
+ 

ot all i n -

empty strings over P , to V . For a given p C P d e f i n e  a p - s c e n a r i o  as a
+mapping from the subset of P c o n s i s t i n g  of s t r i n g s  b e g i n n i n g  with p,

to V.

Next , for a given choice N ’— P of nonfaulty processors , and a given

scenario ~~, say that is consistent w i t h  N if for each p e N , q € P and

w ~ P~ (set of all strings over P), ~(pqw) = C (qw). (In other words ,

is c o n s i s t e n t  w i t h  N if  each processor  in N always reports what it knows

or hears  t r u t h f u l l y . )

Now define the notion of interactive consistency as follows , For

each p P , l e t  F~ be a ma p p ing  tha t t akes  a p - s c e n a r i o  and a p r o c e s s or

q as arguments , and returns a value in V. (Intuitivel y, F~ gives the

value that p computes for the  e l e m e n t  of t h e  i n t e r a c t i v e  c o n s i s t e n c y  vec-

tor corresponding to q on the basis of ~~.) We say  t h a t  [F ip  e

assure interactive consistency for ~ faults if for each choice of N ~j

N I  ‘
~~ n - in , and each scenario ~ consistent with N ,

(i) For all p,q c N ,F~~(~~~,q)  = ~ ( q )

( i i )  For a L l  p , q  C N , r C p ,  F~~(~~1)~~r )  = F q (~~q , r )

where  and rq denote the restrictions of to strings beginning with p

and q, respectivel y .

Intuitivel y ,  clause (i) requires that each nonfault y processor p

correctly compute ti ne priv ate value of each nonfaultv processor q, and

clause (ii) requires that each two nonfaulty processors compute exactl y

the  sauw -  v e c t o r .

Theore m .  I t  V �2 and ri ~ 3m , there exists no fF p j p€ P 1 that assures

i t t t i ’ i ’ i c t ~ ve c o n s i s t i - n c y  t o~ m f a u l t s .

Proof. S u p p o se  , to the contrary , that ~F 1) pep ~ assu re i u t e r a c  tive con —

s is tincy tor in fa in Its. Si nec ii � 3m , P c a i n  he p a r t  i t  i ned i nte

t h r e e  noneinptv sets A , B , and C , each 1 which has no m o r e  than

m ~ - i i h i - r s  . L e t  v and v ’ be two d i s t  m e t  values in V. Our

B—l O
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general p lan is to construct three scenarios ~~, and ~ such

that ~ is consistent with N = A C , S with N B ~J C and

~ with N = A B. The members of C will all be given private

value v in ~ and v ’ in ~~. Moreover , o, e , and will be con-

structed in such a way that no processor aCA can distinguish

~ from ~ (i.e., ~a 
= 
~a
) and no processor beE can distinguish

S fr om (i.e., 
~b 

= 
~~b). It will then follow that for the

scenar io  ~ p r o c e s s o r s  in A and B will compute different values

for the members of C.

We define the scenarios ~~, 5, and ~ r e c u r s i v e l y  as f o l l o w s :

( i )  For each weP
+ 

not ending in a member of C , let

= 5(w) r~~w) = v.

(ii) For each acA , beB , eeC let

c~(c)  = ~~( a c )  = n~ bc) = o~ cc)  = v

S(c)  = 5( ac)  = E ( b c )  = 5( cc )  = v ’

= c (ac)  = ~ ( b c )  = c- (cc)  = v

( i i i)  For each acA , b e B , ceC , peP , w€ P *c

(i.e., w is any string over P ending in c), let

~ ( paw) = o~ a w )

~~(p bw) = ~ (bw)

o~1p cw) = ~ (cw)

5(paw) = Q( a w )

S ( p bw) = 5(bw)

5 (p c w )  = 5 ( c w )

c~ paw) = ~ (aw)

~~(p bw) = r ( b w )

:(acw) = c~(cw)

~(bcw)  = (cw)

-- 
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It is easy to verify by inspection tha t ci, ~~, and are in tact con-

sistent with N = A J C , B U C , A U B , respective ly. >lorcover , one can

show by a s imp le induction proof on the length of w that:

c i ( aw)  = c(aw), ~(bw) = c(bw)

f o r  a l l  acA , b e B , a nd u C P *.

It then follows from the definition of interactive consistency that

for any aCA , b e B , eeC ,

v = ~~(c )  = Fa(~ a,C) = Fa (~~a , c)  = F
b(~ b ,c) = Fb ( S l , c)  = v ’ g i v i n g  a

c o n t r a d i c t i o n ,  Q. E .D .

5. An A l g o r i t h m  U s i n g  A u t h e n t i c a t i o n s

The negative result of the last section depends strongly on t h e

a s s u m p t i o n  t h a t  a f a u l ty  p r o c e s s o r  may r e f u s e  to  p ass  on v a l u e s  i t  has

rece ived  f r o m  o t h e r  p r o c e s s o r s  or may pass  on f a b r i c a t e d  v a l u e s . This

section addresses the situation in which the latter possibility is pre-

cluded. We will assume , in other words , that a faulty processor may

“lie ” about its own value , and may refuse to relay values it has received ,

but lia r not relay alteced values without betraying itself as faulty.

In p r a c t i c e , t h i s a s s u mp t i o n ca n b e sa t i s f ied to an arbitraril y h i gh

degree of probabili ty using authenticators. An authenticator is a redun-

daun t a u g m e n t  to  a d a t a  i t e m  t h a t  can  be c r e a t e d , i d e a l l~~, o n ly  b y t h e

o r i g i n a t o r  of t h e  da t a . A p r o c e s s o r  p c o n s t r u c t s  an authenticator for a

d a t a  i t e m  d by calculating A~~[ d I ,  where A~ is some m a p p i n g  k n o w n  only to

p. I t  m u s t  be h i gh l y i m p r o b a b l e  tha t a p r o c e s s o r  q o t h e r  t h a n  p can gen-

e r a t e  t h e  a u t h e n t i c a t o r  A [ d j  f o r  a g iven d . At the  same t i m e , i t  m u s t

he easy f o r  q to  c h e c k , f o r a given p, v , and d , t h a t  v = A~~~[ d 1 .  The

p r o b l e m  of devis  t u g  m a p p i n g s  w i t h  t h e se  p r o p e r t i e s  is a c r y p t o g r a p h i c

one . 7W- t hu ds  for t h e i r  c o n s t r u c t i o n s  a r e  d i s cu s s e d  in ~2 and 3 , F o r

m a n y  app l i c a t i o n s  in which faults are diii -  to r andom e rr o r s  r a t h e r  than to

mat ic i on s  inte I lige ince , any  m a p p i n g s  t h a t  “s u i t a b l y  r a n d o m i z e ” the  da ta

s u f f i c e ,
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A scenario ~ is carried out in the following way. As before , let

v = ~(p) designate p ’s private value . p communicates this value to r

by send ing  r the message consisting of the trip le (p, a, v), where

a = A~~[vJ . When r receives the message , i t  checks tha t a = A~~[ v] .  I f

so , r takes  v as the va lue  of c ( r p ) .  Otherwise  r l e t s  O ( r p )  = N I L .

More genera l l y ,  if r receives exac t l y  one message of the  form

(p 1, a 1(p 2 ,  a 2 . . . ( p ~~, a k ,  v ) . . . ) ) , where a k = A
k [v J  an d f o r  I � I � k - i ,

a 1 = A 1[ (p ~ +i ,  a~+ l . . . (p k ,  a k , v ) J , then c ( r p l . . .p k ) = v , Ot he rwise ,

‘~(rp 1. , ‘
~~k~ 

= N I L .

A scenar io  ~ c o n s t r u c t e d  in th is  way is c o n s i s te n t  w i t h  a given

choice N of f a u l t y  p r o c e s s o r s , if  f o r  a l l  p rocessors  pe5 , qeP and s t r i n gs

w , w ’ over P ,

( i )  ~~( q p w )  = ~ (pw)

( i i)  ci~w ’ pw) is e i ther  c(pw) or NIL

Condi t ion  ( i )  insures that  n o n f a u l t y  processors  are a lways  tru t h f u l .
C o n d i t i o n  ( i i )  guaran tees  that  a processor  cannot r e l ay  an altered value

of i n f o r m a t i o n  received from a n o n f a u l t y  processor .

We now presen t  a procedure , us ing  m+l - Ievel  a u t h e n t i c a t e d  scenar ios ,
that guarantees interactive consistency for any n � m , As b e f o r e , the

procedure  is descr ibed  in terms of the va lue  a n o n f a u l t y  processor  p

records f o r  a given processor  q on the basis  of

Let  5
pq 

be the set  of a l l  non-NIL va lues  ~~ ( p w q ) ,  w h e r e  w

ranges  over s t r i n g s  of d i s t i n c t  e l emen t s  w i th  l eng th  ~ in

over p - [p , q ) .  If  Spq has e x a c t l y one e lement  v , p records

v for  q ;  o the rwise , p records N I L .

To see tha t  i n t e r a c t i v e  cons i s t ency  is assured  consider  t i r s t  the
case in which  q is n o n f a u l t y .  In t h i s  case ~~ (pwq)  is e i t h e r  ~ ( q )  or
N i L  fo r  each a p p r o p r i a t e  w b y cond i t i o n  ( i i ) .  S i n c e , in p a r t i c u l a r ,

~p (P q)  = c (q)  by  ( i ) ,  Spq = I~~(q)1. p thus records c(q) lor q as

r equ i r ed .

B— 13



r
If  q is f a u l t y ,  i t  s u f f i c e s  to show only tha t  for  each two n o n f a u l t v

p roces so r s  p and p ’ , 5pq = 5p ’ q ’ So suppose  v e Spq i . e . ,  v = ~~ (pwq)

for some string w having no repetitions , with length � in over P - { p , q l .

If p ’ occurs in w , (say w = w
1

p ’ w
2

) then  ~ ( pwq ) = ~‘(p ’ w
2

q)  b y ( i i ) ,  hence

v = c(pwq) C Sp I q. If p ’ does not occur in w and w is of length K

then pw is of length � in , so v = c~ pwq) o~ p ’pwq) e ~~~~ Finally , if

p ’ does not occur in w and w is of length in , w m u s t  be of t h e  f o r m  w
1

rw .~

where  r is n o n f a u l t y ,  g iv ing t h a t  v = c~~pwq ) = c ( r w 7q) (b y ( i i ) )  =

~(p ’ rw 2q)  (b y (U )  e Sp t q. In each case v C Sp I q. A symme t r i c a l  argu-

ment shows that if v e Sp T q~ v C Spq . Hence Sp ’q = Spq as required .

Q.E .D.

6 . Conc lu s ions

‘rhe p r o b l e m  of obtaining interactive consistency appears to be quite

f u n d a m e n t a l  to the  des i gn of f a u l t - t o l e r a n t  sys tems  in which  execu t ive

co n t r o l is di s t r i b u t e d , in the SIFT t4~ f a u l t - t o l e r a n t  compu te r  unde r

deve lopment  a t  SRI , the  need fo r  an i n t e r a c t i v e  cons i s t ency  algorithm

a r i s e s  in a t  l eas t  t h r e e  a spec t s  of the d e s i g n - - s y n c h r o n i z a t i o n  of c locks ,
stabilization of input from sensors , and ag reemen t  upon r e s u l t s  of d iag-

n o s t i c  t e s t s . In  t h e  p r e l i m i n a r y  s t ages  of the  des ign  of th is  sy s t e m ,

it was naively assumed tha t simp le majority voting schemes could be

devised to treat these situations . The gradual realization that simp le

majorities are insufficient led to the results reported hi- r i- .

these re-s in I t s  by no means  a n sw e r  a l l  the  q u e s t i o ns  one migh t pose

about interactive consistenc y . The algorithms presented here a r e  intended

to d e m o n s t r a t e  e - x i s t e n c i - . The cons t r u c t i o n  of ef ficient algorithms and

a i g o r i t h i n s that  w o r k  u n d e r  t i n e  a s s u m p t i o n  of r e s t r  ic ted c om m u n i c a t i o n s  is

a topic for future research. Other questions that will inc co n s i d e r e d

inc lude those of reaching approximate agreement and reaching agreement

under various prob abilistic assumptions .
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Appendix C

MPCHINE PROOFS OF THE SYNCHRONIZATION ALL~ORITHM

This appendix contains a history file showing the definitions
used with the Boyer-Moore theor~ n prover arx~ the l~ nmas proved in
connection with the verification of some aspects of the synchro-
nization aigoritlifi discussed in Section IV of the repert.

(FILECREATED “ 6—Sep—78 20:21:51” <SH~~TAK>N EWHIST. .2 16587

changes to: NEWHIST)

(PRETI’YCctIPRThTr NLWHISTCct4S)

( RPAQQ N HIS’]XXI’lS (NE~ HIST) )

(RPAQQ NEWHIST ( (DCL PV (P)
NIL)

(DCL LIE (STRING )
NIL)

(DEFN SETP (X)
(IF (PLISTP X)

(IF (NLISTP X)
T
( AND (NOT (M~ V1BER (CAR X)

( CDR X ) ) )
(SF~rP (CDR X ) ) ) )

F)
NI L )

(D EFN CEILING.QWTIENT (X Y)
(IF ( EQUAL X (TIMES Y (QtXY~IENT X Y ) ) )

(QIXITIENT X Y)
( ADD1 (QUOTIENT X Y ) ) )

NIL )
(D EFN DISTRIB 1 (Y Z)

(IF (NLISTP Y)
“NI L”
(CO~~ (CONS Z (CAR Y ) )

(D ISTRIB 1 (CDR Y)
Z ) ) )

NIL)
(DEFN DISTRIB (X Y)

(IF (NLISTP X)
“NIL”
(APPEND (DISTRIB 1 Y (CAR X ) )

(DISTRIB ( CDR X)
Y)))

NIL)
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(DEFN K.PE R! IS. OVER.S  (K S )
(IF (NUMBERP K)

(IF ( EQUAL K 0)
(COt.~ “NIL” “N IL” )
( DISTRIB S (K. PE R MS.OVER.S (SUB 1 K )

S ) ) )
“ NIL ”)

NI L )
(D EFN SCEN1 (STRING LIARS)

( I F (N LISTP STRING )
“NIL”
(IF ( NLISTP (CDR STRING ) )

(PV (CAR STRING) )
( I F ( MEMBER ( CADR STRING )

LIARS )
(LIE STRIN G )
(SCEN1 (CDR STR ING )

LIARS ) ) ) )
NIL)

(DEFN SCEN (STR I NG SUFFIX LIARS )
(SCEN 1 ( APPEND STRING SUFFIX)

LIAR S)
NIL)

(DEFN TEST. STRING (STRING P Q VALUE SUFFIX LIARS )
(EQUAL VALUE (SCEN (CONS P ( APPEND STRING (CONS Q “NIL ” ) ) )

SUFFIX LIARS))
NIL)

(DEFN TEST. STRINGS (STRINGS P Q VALUE SUFFIX LIARS )
( IF (NLISTP STR INc~~)

T
( AND (TEST.STRIN G (CAR STRIN(~~)

P Q VALUE SUFFIX LIARS)
(TEST .STRIN(~ (CDR STRIN(~~)

P Q VALUE SUFFIX LIARS)))
NIL)

(DEFN TEST.SET (SET P Q VALU E LENGTH SUFFIX LIARS)
(TEST.STRINGS (K.PERMS.O VER.S LENGTH SET)

P Q VALUE SUFFIX LIARS)
NIL)

(DEFN HI ~S .  K. INSTAN ES (K VALUE BAG )
(IF (NUMBERP K)

(I F ( EQUAL K 0)
T
(IF (NLI STP BAG)

F
(I F (EQUAL (CAR BAG)

VALUE )
(HAS .K.IN STANCES (SUB 1 K)

VALUE
(CDR B A G ) )

(HA S .K.rN STAN~ES K VALUE (CDR BAG)))))
F)

NIL)
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(DEFN VOTE (NUMB ER BALLOTLIST)
(IF (NLISTP BALL(Y~LIST)

“NIL”
(IF ( H AS.K. INS TA~~ ES (SUB 1 NUMBER)

(CAR BALLOTL IST)
(CDR BALLOTL IST) )

(CAR BALLCY~LIST)
(VOTE NUMBER (CDR BALWTLIST ))))

N I L)
(DEFN

K.C ~MB S.OVER. S
(K 5)
(IF (NtJMBERP K)

(IF ( EQUAL K 0)
( CONS “ NIL ” “NIL” )
(IF (NLI STP S)

u NIL”
( APPEND (DISTRIB 1 (K. CONBS.OVER. S (SUB 1 K )

(CDR 5) )
(CAR 5))

(K.CcMBS.OVER.S K (CDR 5 ) ) ) ) )
“NIL”)

NIL )
(DEFN STRIP (ALIST )

(IF (NLISTP ALIST)
“NIL ”
(CONS (CDR (CAR ALIST) )

(STRI P (CDR AL I ST))))
NIL )

(DEFN DELETE (X Y)
(IF (NLISTP Y)

Y
(IF ( EQUAL X (CAR Y))

(DELETE X (CDR Y ))
(C~~S (CAR Y)

(DELETE X (CDR Y ) ) ) ) )
NIL )

(DEFN LAST. ELT (STRING)
(IF (NLISTP STRING)

“NIL”
(IF (NLISTP (CDR STRING))

(CAR STRING)
( LAST.ELT (CDR STRING)) ) )

NI L)
(D EFN HAS.~13. LI ARS (STRING LIARS )

(IF (NLISTP STRING )
T
(IF (MEMBER (CAR STRING )

LIARS )
F
(H AS.~~).LI ARS (CDR STRING )

LIARS )))
NIL )
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(PROVE. LEMMA NO.LIARS (REWRITE)
(IMPLIES (AND (LISTP STRING)

(HAS NO. LIARS STRING LIARS) )
(EQUAL (SCEN1 STRING LIARS)

(PV (LAST.ELT STRING))))
NIL NIL)

(DEFN 1’ON.FAULTIES (PROCS LIARS)
(IF (NLISTP PRDCS)

“NIL”
(IF (MEM BER ( CAR PRCCS)

LIARS)
(NON.FAULTIES (CDR PJ~ X S )

LIARS)
(CONS (CAR PROCS)

(NON.FALJLTIES (CDR PROCS)
L I A R S ) ) ) )

NIL)
(PROVE . LEMMA LASTELT. APPEND ( REWRITE)

(IMPLIES (AND (PLISTP X)
(PLISTP Y)
(LISTP X))

(EQUAL (LAST. ELT (APPEND Y X))
(LAST.ELT X)))

NIL NIL)
(PROVE . LEMMA ‘fl. LIARS.CONS ( REWRITE)

(IMPLIES (AND (LISTP STRING )
( HAS.NO . LIARS STRING LIARS) )

(EQUAL (SCEN 1 (CONS X STRING)
LIARS )

(PV (LAST.ELT STRING))))
NIL NIL )

(PR OVE. LEMMA MEMBER.CAR ( REWRITE)
(IMPLIES ( AND (LISTP X)

( MEMBER (CAR X)
LIARS) )

(NOT (HAS.NO .LIARS X LIARS) ) )
NIL NIL)

(PROVE. LEMMA APPEND. CAR ( REWRITE)
(IMPLIES (AND (LISTP X)

( MEMBER (CAR ( APPEND X
( CONS Q “N I L ” ) ) )

LIARS) )
(NOT (HA S.NO. LIARS X L I A R S ) ) )

NIL N IL )
(PROVE . LEMMA MEZ ’1. APPEND (RE WRITE )

(EQUAL (CAR ( APPEND X 1))
(IF (LISTP X)

(CAR X)
(CAR Y ) ) )

NIL N IL )

C—4

L 
•

_

~~~~~~~~~~ 
-
~~~ ~~~~~~~~~~ --



r- -- - - -—
~~

-
~

• - •
~

•- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(PROVE. LEMMA TEST. STRING.NO. LIARS (REWRITE)
(IMPLIES (AND (PLISTP STRING)

(LISTP STRING)
( HAS.NO . LIARS STRING LIARS )
(NOT (MEMBER Q L I A R S ) ) )

(EQUAL (SCEN1 (CONS P
( APPEND STR ING

(CONS Q “NIL” )

LIARS)
(PV Q ) ) )

NIL NIL)
(DEFN MEMB ER . STRINGS. HAVE . NO. LIARS (STRINGS LIARS)

(IF (NLISTP STRINGS )
T
(IF ( HA S.NO .L I ARS (CAR STRINGS)

LIARS)
(MEMBER . STRIN GS. HAVE. NO. LI ARS (CDR STRIN GS )

LIARS)
F ) )

NIL)
(PR OVE . LEMMA DISTRIB. NO . LI ARS ( REWRITE)

(IMPLIES (AND (MEMBER. STRINGS. HAVE. NO. LIARS Y
LIARS )

(HAS.NO . LIARS S LIARS) )
( MEMBER. STRIN GS . HAVE . NO. LIARS

(DISTRIB S Y)
LIARS) )

NIL NIL )
(PROVE . LEMMA K .PE RMS.NO . LIARS ( REWRITE)

(IM PLIES (HAS.NO . LIARS S LIARS )
(MEMBER. STRINGS. HAVE . NO. LI ARS

(K.PERM S.OVER.S K S)
LIARS) )

NIL NIL)
( PROVE . LEM MA STRONGER. TEST. STRING. NO. LIARS ( REWRITE)

(IMPLIE S ( AND (PLISTP STRING)
(HAS .NO . LIARS STRING LIARS )
(NOr (MEMBER Q LIARS)) )

(EQUAL (SCEN 1 (CONS P
(APPEND STRING

(CONS Q “NIL ”)

LIARS)
(PV 0 ) ) )

NIL NIL)
(DEFN L IS T.CF.PLISTS (STRINGS )

( I F  (PLISTP STRIN GS )
( IF  (NLISTP STRIN GS )

T
( IF  (PLISTP (CAR STRINGS))

(L I ST.cF .PL I STS (CDR STRINGS))
F ) )

F)
NIL)
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(PROVE.LEMMA K. PERM S. I S. LIST. OF . PLISTS ( REWRITE)
(IM PLIES (PLIST P S)

(LIST.OF.PLISTS (K.PERMS .OVER.S K 5 ) ) )
NIL NIL )

(PROVE. LEMMA TEST. STRINGS . NO. LIARS (REWRITE)
(IMPLIES ( AND (ME MBER. STRINGS . HAVE . NO . LIARS

STRINGS
LIARS )

(NOT ( MEMBER Q LIARS) )
(LI ST.OF.PL I STS STRINGS))

(TEST . STRINGS STRINGS P Q (PV Q)
“NI L” LIARS )

NIL NIL )
(PROVE . LEMMA TEST. SET. NO . LIARS (REWRITE)

(IMPLIES (AND (PLISTP S)
( HAS.NO .LIARS S LIARS )
(NOT (MEMBER Q LIARS)) )

(TEST .STRINGS (K.PERMS.OVER. S K S)
P Q ( P V Q)
“NIL ” LIARS) )

NIL NIL )
(PROVE. LEMMA K.C GtIB S.I S. LIST.O F .PL I STS (REWR ITE )

(I MPLIES (PLI STP 5 )
( LIST.OF.PLISTS (K.C GVI BS.OVE R .S K S ) ) )

NIL NIL)
(P ROVE. LEMMA MEM . DISTRIB1 (REWRITE)

(IM PLIES ( MEMBER X 1)
(M EM BER (CONS A X)

(DISTRIB 1 Y A ) ) )
NIL NI L )

(PROVE . LEMMA SUB1.IE NGT H (REWRITE)
(IMPLIES ( AND (PL ISTP X)

(LISTP X ) )
(EQUAL (SUB 1 (LENGTH X ) )

(LENGTH (CDR Xfl ))
NIL NIL )

(DEFN ORDERED.SUBSETP (X Y)
( IF  (NLISTP X)

T
(IF (NLISTP Y)

F
(IF (ORDERED.SUBSETP X (CDR Y))

T
(IF (EQUAL (CAR X)

(CAR Y ) )
(ORDE RED .SUBSETP (CDR X )

(CDR Y) )
F ) ) ) )

NIL)
(PROVE. LEMM A ORDERED.SUBSETP.CDR (REWRITE)

(IMPLIES (AND (PLISTP X)
(P LI STP Y)
(ORDE RED.S UBsErP X Y ) )

(ORDE RED. SUBSETP (CDR X)
Y ) )

NIL NIL)
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(PROVE. LEMMA ORDERED. SUBSET. K. COMBS ( REWRITE)
(IMPLIES ( AND (PLIST P X)

(PLISTP Y)
(ORDERED. SUBSETP X Y))

(MEMBER X (K.CC t 4BS.CVER . S (LENGTH X)
Y ) ) )

NIL NIL)
(DEFN NON. FAULTY. P1~XS (PI~ CS LIARS)

(IF (NLI STP PROCS)
“NIL”
(IF (MEM BER (CAR P1~X S )

LIARS )
(NON. FAULTY. PRCX~S (CDR PR(XS)

LIARS)
(C~~S (CAR PRCX S)

(NON. FAULTY. PRCCS (CI~~ PI~XS)
L I A R S ) ) ) )

NIL)
(PROVE. LEMMA NON. FAIJLTIES. HAVE. NO. LIARS ( REWRITE)

(HAS .N3. LIARS (NON . FAULTY. PR(XS PI~XS LIARS )
LIARS )

NIL NIL)
(PROVE. W4MA PLISTP. NON. F AULTY . PR(X S (REWRITE)

(PLISTP (NON IFAULTY . P1~XS PR(XS LIARS ) )
NIL NIL )

(PROVE. LEMMA ORDERED. SUBSET. NON. FAULTY . PR(XS (REWRITE )
(ORDE RED. SUBSETP (NON. FAULTY. PROC S PRCX S LIARS )

PR OC S)
NIL NIL )

(DE FN TEST.SE ~~ (SE~~ P Q VALUE LENGTH SUFFIX LIARS )
(IF (NLISTP SE~~ )

F
(OR (TEST.SET (CAR SETS )

P Q VALUE LENGTH SUFFIX LIAR S)
(TEST.SETS (CDR SETS)

P Q VALUE LENCfl-1 SUFFIX LIARS )) )
NI L )
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(DEFN
IC .VECWR
(P PRO S PRCX SCDRS N K SUFFIX LIARS )
(IF

(NLISTP P1~XSCDRS )
~ NIL”
(IF

(ZE RO P N)
“NIL ”
( CONS

(CONS
( CAR PRCCSCDRS)
(IF (TEST. SETS (K.C CMBS .OV ER.S

( ADD1 (QUOTIENT (PLUS N M)
2 ) )

PR~~S)
P
(CAR PR (X SCDRS)
(SCEN (CONS P (CONS (CAR PROC SCDRS)

“NI L ”)
SUFFIX LIARS )

M SUFFIX LIARS )
(SCEN (CONS P (CONS (CAR PI~XSCDRS )

“ NIL” ) )
SUFFIX LIARS )

(VOTE (CE IL ING .QWT IENT (PLUS N M)
2)

(STRI P (I C.VEC ’IOR P (DELETE (CAR PR(XSCDRS )
P RCCS)

(DELETE (CAR PI~XSCDRS )
PR O S)

(StJ B1 N)
(SUB 1 K)
(CONS (CAR PROCSCDRS)

SUFF IX )
L I A R S ) ) ) ) )

(IC .VECIOR P PRO CS (CDR PRCX SCDBS )
N M SUFFIX L I A R S ) ) ) )

NIL)
(PROVE . LEMMA M FNBER.TEST. SETS ( REWRITE)

(IMPLIES ( AND (M EMBER X Y)
(TEST .SET X P Q VALUE LENGTH SUFFIX

LIARS ) )
(TEST .SETS Y P Q VALUE LENGTH SUFFIX

LIARS) )
NIL NIL )

(PROVE . LEMMA
MEII.NON. FAULTY. K.C CM BS
( REWRITE )
(IMPLIES (PLISTP PRct S)

(MEMBER (NON.F AUL TY . PR(XS PRC.tS LIARS )
( 1< .CcI4BS.OVER. S

(LENGTH (NON.FAULTY.P R (XS PRC XCS LIARS ) )
P R c X S ) ) )

NIL NIL)
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( PROVE . LEMMA TEST. STRINGS .NON . FAULT IES ( REWRITE)
(IMPLIES ( AND (PL I STP PR (XS)

(NOT (MEM BER Q LIARS)))
(TEST . STRINGS

(K. PE RMS . OVER. S
LENGTH
(N ON.FAULTY. PR(X S PR(X S LIARS) )

P Q (PV Q)
“ NIL” LIARS) )

NIL NI L)
(PROVE. LEMMA ME7’IBER.’IEST.SETS . INSTANCE (REWRITE)

(IM PLIES ( AND (MEMBER (NON .FAULTY.PR (X 5 PROCS
LIARS )

y)
(TEST .SET (NON .FAULTY.PROCS PI~ CS

LIARS )
P Q VALUE LENGTH SUFFIX
LIARS) )

(TEST . SETS Y P Q VALUE LENGI’H SUFFIX
LIARS) )

NIL NIL)
(PROVE . LEMMA

M EMBER. TEST. SETS. INSTANCE. INSTANCE
( REWRITE)
(IMPLIES (AND ( MEMBER (NON.FAULTY.PRCX S PROS LIARS)

(K.  CCMBS. OVER. S
(LENGTH (NON . FAULTY. PR(X. S PRC XCS LIARS )

PR (X S))
( TEST. SET (NON. FAULTY. PRCCS PROCS LIARS)

P Q VALUE LENGTH SUFFIX LIARS))
(TEST .SETS (K.CCI’IBS.OVER. S

(LEN3TH (NON. FAULTY . PR(X S PRO CS LIARS) )
PRCXS)

P Q VALUE LENGTH SUFFIX LIARS) )
NIL NIL)

(PROVE . LEMMA
TEST. SETS. NON. FAULTIES
(REWR ITE)
(IMPLIES (AND (PLISTP PRCCS)

(NOT (ME MBER Q LIARS)))
(TEST. SETS (X.CCY4BS. OVER. S

( LENGTH (NON . FAULTY. P RO S PRCCS LIARS) )
PRtXS)

P Q (PV Q)
K “NIL” LIARS) )

NIL NIL )
(PROVE . LEMM A NEW . M EMB ER . TEST . SETS. INSTANCE ( REWRITE)

(IMPL IES
( AND (MEM BER X (K.CCIIBS.OVER.S (LENGTH X)

y ) )
(TEST.SET X P Q (PV Q)

LENGTH “ NIL” LIARS) )
(TEST. SETS (K. COMBS. OVER. S (LENGTH X)

Y)
P Q (PV Q)
LENGTH “NIL ” LIARS))

NIL NIL)
C—9



(PRO VE. [EMMA TEST. SETS. LEMM A ( REWRITE)
(I MPL IES ( AND (P LISTP X )

(PL ISTP PR(X~S)
(ORDERED. SUBSETP X PRCCS)
( HAS . NO. LIARS X LIARS )
(NOr (MEMBER Q LIARS ) ))

(TEST.S ETS (K.CC?.IB S.OVER.S (LENGTH X)
PIOCS)

P Q (PV Q)
LE~~ PH “ NIL ” LIARS))

NIL NIL)
(DEFN ~LC (X Y Z)

(IF (NLISTP X)
(IF (NLI STP Y)

T
(IF (NLISTP Z)

F
(IF ( EQUAL (CAR Y)

( CA R Z ) )
(‘PC X (CDR Y)

(CDR Z ) )
(~It X Y ( CDR Z ) ) ) ) )

( I F (N LISTP Y )
F
(IF (NLISTP Z)

F
(IF ( EQUAL (CAR X)

(CAR Y) )
(IF ( EQUAL (CAR Y)

(CAR Z) )
(TC (CDR X)

(CDR Y)
( CDR Z))

(‘PC X Y (CDR Z ) ) )
(I F (EQUAL (C AR Y)

( CAR Z) )
(It X (CDR Y)

(CDR Z ) )
(IC X Y (CDR Z ) ) ) ) ) ) )

NIL )
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(DEFN JX (X Y Z)
(I F (N LISTP Y)

(IF (NLISTP X)
T F)

(IF (NLISTP Z)
F
(IF (EQUAL (CAR Y)

(CAR Z ) )
(IF (NLISTP X)

(UC X (CDR Y)
(CDR Z) )

(IF ( EQUAL (CAR X)
(CAR Y ) )

(UC ( CDR X)
( CE1~ Y)
( CDR Z) )

(UC X (CDR Y)
(CDR Z))))

(UC X Y (CDR Z ) ) )))
NI L)

(DEFN REST (X Y)
(IF (NLISTP X)

Y
(REST (CDR X)

(CDR Y ) ) )
NIL )

(DEFN N.SUBSET.OF.S (N S)
(IF (ZE RO P N)

“NIL ”
(IF (NLISTP 5)

“NIL”
( CONS (CAR 5)

(N.SUBSET.OF.S (SUB1 N)
(CDR 5)))))

NIL )
(PRO VE. LEMMA PL I STP.N.S UBSET.OF.S ( REWRITE)

(PLISTP (N.SUBSET. OF . S N 5 ) )
NIL NIL )

(PROVE . LEMMA ORDERED. SUBSETP . N. SUBSET . OF .S ( REWRITE)
(IMPLIES ( AND (NUMB ERP N)

(LESSEQP N (LENGTH S) )
(PLISTP S ) )

(ORDER ED.SU BSETP (N.SUBSET.O F .S N S)
5 ) )

NIL NIL )
(PROVE . LEMMA N.SUBSET. APPEND (REWRITE)

(IMPLIES (PLISTP X)
(EQUAL ( APPE ND

( N.SUBSET.O F.S N X)
(REST (N.SUBSET.GF.S N X)

X ) )
X ) )

NI L NI L )
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(PRO VE. LEMMA OS. APPEND ( REWRITE)
(IMPLIES ( AND ( EQUAL Z Z)

(ORDERED. SWSETP ( APPEND X Y)
Z ) )

(ORDERED.SUBSETP X Z ) )
NI L NIL)

(PR OVE . LEMMA
OS. APPEND. INSTANCE
( REWRITE)
( I MPLIES

( AND (NOT (LESSP (LENGTH (NON.FAULTY.PRC CS PRCCS LIARS))
N ) )

(PLISTP X)
(ORDERED. SUBSETP

( APPEND X
(REST (N.SUBSET. OF. S

N
(NON. FAULTY. PROCS PROCS LIARS))

(NON.F AULTY. PR(X 5 PRCCS LIARS )))
Z)

(ORDERED. SUBSETP X Z ) )
N IL NIL)

(PROVE. LEMM A
OS. NSUBSET
(REWRITE)
( I MPLIES ( AND (NUMB ERP N)

(PLISTP PRCCS)
(LESSEQP N (LENGTH (NON.F AULTY.PR (XS PROCS

LIARS))) )
(ORDERED. SUBSETP (N. SUBSET. OF.S

N
(NON.FA ULTY. PROCS PRCXCS LIARS) )

PRcX2S) )
N I L NIL)

(PROVE. LEMMA LENGTH.N.SUBSET ( REWRITE )
(IM PLIES ( AND (NTJMBERP N )

(NOT (LESSP (LENGTH 5)
N ) ) )

(EQUAL (LENGTH (N.SUBSET.OF.S N S))
N ) )

NI L NIL )
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(PROVE . LEMMA HAS.NO . LIARS. N.SUBSE T ( REWR ITE)
(IMP LIES (PLISTP PR (XS)

( HAS .NO . LIARS
(N.SUBSET.OF.S N

(NON. FAULTY. PRCtS PR(XS
LIARS))

LIARS) )
NIL NI L )

(PROVE . [EMMA NEW.TEST.SETS. LEMM A ( REWR ITE )
(IMPL IES ( AND ( EQUAL N (LENGTH X ) )

(PLI STP PRcXS)
(ORDERED.SUBSETP X PR C XS)
(HAS.NO. LIARS X LIARS)
(NOT (M EMBER Q LIARS))
(PLISTP X ) )

(TES T.SET S (K .C cM BS.OVER .S N PR~CS)
P Q (PV Q)
K “NIL ” LIARS) )

NI L NI L)
(PROVE . LEM MA

• 1 TEST. SETS . N
(REWRITE)
(IMPLIES (AND (EQUAL N

(LENGTH (N.SUBSET.OF.S
N
(NON.FALJLTY.PR(XS PRCCS LIARS))

) )
(NUMBERP N )
(NOr (L ESSP (LENGTH (NON. FAULTY. PR(XS PR(X S

LIARS))
N))

(PL ISTP P R (XS)
(NOT (MEMBER Q LIAR S)) )

(TEST.SETS (K .COMBS.OVER. S N PR~CS)
P Q (PV Q)
LENGTH “ NIL” LIARS) )

NIL NIL)
(PROVE . LEMM A

STRWG.TEST. SETS. N
(RFWRrrE)
(IMP LIES ( AND (NUMBERP N)

(NOT (LESSP (LENGTH (NON. FAULTY. PR(X S PI~XS
LIARS) )

N ) )
(PL I STP PR Ct S)
(Nor (MEMBER Q LIARS)))

( TEST.SETS (K.C G4 BS.O VE R .S N PR tX S)
P Q (PV Q)
LENGTH “ NIL ” LIARS))

NIL NI L )
(PROVE. LEMMA QUO.TIMES ( REWRITE)

(IMPLIES (NtJMBERP N)
(NOP (LESSP N (TIMES 2 (QUOTIENT N 2)))))

NIL NIL)))
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Apperthx D

PROJECT ACTIVITIES

P ninnber of out side activities were undertaken on proj ect. They

consisted of at tendance at conferences or ~x rkshops rela ted to this

proj ect ( in  man y case s presentations were mad e at these gatheri n gs) , and

publ ication of papers closely related to the project. The essential
features of these activ ities are stznmarized be low .

1. Conferences Attended and Pap ers Presented

Fi f th  Internat ional Joint conference on Ar t i f ic ial Intelligence —

1977 (I JC / ’I —77 ) , Massachusetts Institute of Technology, Cambridge ,
Mass., 22—2 5 Aug ust 1977 . Robert E. Shostak presented his pape r , “A n
Algori thm for Reasonirx~ Abou t Equality,” covering portions of his

research on the decision algorithm for Presburger arithmetic carried out

under this AFa~R contract. His attendance at TJCI’I—77 was also
supported in par t by this contract.

PFOSR/N~~/ONR Conference on Re search Direc t ions in Software
Technology , Pr cw i~1ence , RI , 10—12 October 1977. Bernard El spa s attended
this conference and subnitted a “Discussan t Contr ibu t ion ” at the

irr.,itatjon of Prof. Jack EY~nnis , an Associate Chairman . The

“Discussant Contribut ion” concerned one of the formal conference papers,

“Prog r am Verif icat ion , ” by Ra l ph London . This contr ibut ion is to be

publ ished in the book , Research Direc tions in Software Technology, now

being pr epa red under the general ed itorship of P. Wegner w i t h  T n —

Service support.

Third Intern a tional Conference on Software D~ginee ring, At lan ta ,

CA , 10— 12 May , 1978. Bernard Elspas a ttend ed t h is  conference for the

purpose of ac ting as “coordina tor ” (discussion leader) for an evening

session on “Prospects for Pr ogram Verif icat ion . ” At this  wel l—attended
session a l ively discussion focused on these questions : (1) whethe r
fo rmal correctness proo f is practical , (2)  when such technique s might be
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expected to cane into wider use outsid e of acad em ic and laboratory
envirom~ents , and (3)  wh ich basic problems cur ren t ly  inhib i t  this
technology t ransfer .

2. Papers Published

Robert E. Shostak , “An Algorithm for Reasoning About Equal i ty ,”

Proc . IJC AI —77 Confe rence , Vol .  :i , pp. 526—527 ( Aug ust 1977 ) .
Scheduled for publication in J.ACM .

Robert S. Boyer and J Strothen Moore , “A Lemma Dr iven Automatic

Theorem Prover for Recursive Func tion Theory,” Proc. IJCAI—77

Conference, Vol .  1, pp. 511—519 (Aug ust 1977). Support for the

preparation of this  paper was shared among the present AFOSR contrac t ,

ONR Contract N00014—75 —C —0816, and N5F Grant !XR72—3373A01 .

Robert F. Shostak , “Decid ing Linear Inequalities by Computing Loop

Resid ues,” s~.bnitted for publication to C.PCM (10 March 1978) .

Bernard El spas , “Program Verif icat ion , ” a discussion of the paper
by Ra l ph L. [or-don of the same nai~e , to app ear in Re search Direc t ions
in Software Technol ogy, P. Weg ner ( e d . ) ,  MIT Press , Cambridge ,
Massachusetts (forthcoming)
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~iia l r e p o rt  d e s c r i 1 3 e~ D r e h r e s s  ov e r  t h e  p e r i o d  1 J u ly  1977 through

30 J u a e  19 7 8 on a I i v e — V e . I E  pro  e c L  t i m e d  at the problem ol s y n t h e s i z i n g  s o —

ca l l e d  i n d u c t i v e  a~~s El  i ons  L 1 s u p p o r t  the  F i oy d — H o ar e  method  f o r  p rov ing
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1) t t r i f l~ the ~i I ~.L lew v e I r i ~ ol t he pro  ] cc t , the  emp h a s i s  was on more or
less di te c t approaches toward alleviati ng this problem. Initially, we
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concentrated on buildin g and u s i n g  a m e c h a n i c a l  s o l v e r  f o r  f i n i t e  d i f f e r e n c e
e q u a t i o n s  to s y n t h e s i z e  i n d u c t i v e  a s s e r t i o n s . This  a p p r o a c h  bad l i m i t e d  suc-
cess.  Untortuna tel y ,  neither this upproach nor the allied approaches pursued
simultaneousl y by Katz , Manna , Wegbr eit , and German have proved to be adequate
in any general sense . Therefore , during the period 1975-77 we explored alter-
natives that gave promise of at Least alleviatin g the problem or of bypassing
it entirely. These alternatives encompassed the transformation of programs
into primitive recursive form prior to verification , the method of generator
induction for proof of pro~ erties of comp lex data structures , the use of a
hierarchical design methodology (HDM) to structure programs so as to minimize
the need for loop-cutting assertions , and the methods allied to subgoal induc-
tion and computationa l induction . The general tenor of these alternative
schemes is that to facilitate program verification considerable care must be
taken in properl y structuring both the programs to be proved and their specifi-
cations. An ideal situation would be One in which all the speci fications are
written in a forma l language tha t can be processed by a powerful theorem
prover. For the Boyer-Moore theorem prover recursive function theory is such
a language .

In tile fifth year of our research , reported here , we concen t r a t e d  on
using the Boyer-Moore system to prove several quite different kinds of pro-
grams . The first set of programs verified here form a system of LISP functions
imp lementing a verification condition generator (VCG) for a simp le block-
structured language . The specifications for this VCG are given as standard
Hoare axioms and rules . The second set of programs are algorithms for achiev-
ing synchronization among several clocks . This app lication arose in  connection
with the design of an operating system for a fault-tolerant avionics computer
(SIFT) with hardware and software redundancy features .

A separate probl em addressed during the fifth year is the app lication of
di r ec ted  grap h theory to the design of an efficient algorithm for deciding
i n e q u a l i t i e s  fo r  se t s  of i n t e g e r  v a r i a b l e s .  Th is work  r e p r e s e n t s  a f u r t h e r
extension of a series of efficient decision al gorithms for Presburger arith-
metic (under various restrictions). Most of these al gorithms have been
imp lemented ( i n  LISP)  as pa r t of experimental program verifiers built at
SRI during the past few years .
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